
ADMIXMAP statisti
al methodsClive J. HoggartPaul M. M
KeigueConway Institute, University College Dublin, Bel�eld, Dublin 4, Ireland. Tel:+353 1 716 6952paul.m
keigue�u
d.ie1. Introdu
tionThese notes brie
y des
ribe the statisti
al model and the algorithms used inADMIXMAP. It is intended for users requiring more detail of the model than isgiven in the manual and in our published papers, and for developers working on thesour
e 
ode. For do
umentation on how to use the program, see the user manual.Note: This do
ument is a rough draft and may not a

urately represent the
urrent program. Last Updated 28 Jan 2005.2. Model for genotypes and haplotypes at a 
ompound lo
us(implemented in 
lass CompositeLo
us)At a simple lo
us, there are S possible alleles, numbered from 1 to S. We observeunphased genotypes at some of these lo
i. Ea
h possible unphased genotype 
anbe represented as a pair of unsigned integers. If the two integers in this pair aredi�erent, the individual is heterozygous. Where the genotype is missing, both allelesare missing. Missing alleles 
an be represented as 0.A 
ompound lo
us is a sequen
e of one or more adja
ent simple lo
i that areseparated by zero map distan
e.A haplotype is a sequen
e of alleles at the L simple lo
i within a 
ompound lo
us.The alleles that spe
ify ea
h possible haplotype 
an thus be represented by a ve
torof unsigned integers.The number H of possible haplotypes at a 
ompound lo
us with s1; : : : ; sL allelesat the L simple lo
i is H = s1s2 : : : sL. Thus ea
h possible haplotype 
an berepresented by an unsigned integer between 1 and H.For ea
h individual at ea
h 
ompound lo
us, there is a pair of haplotypes whi
h
an be represented by a pair of unsigned integers between 1 and H. If the genotype



{ 2 {at any simple lo
i are missing, or there is more than one lo
us in the 
ompoundlo
us and the individual is heterozygous at more than one of these simple lo
i, theobserved genotype data do not uniquely assign a pair of haplotypes.For a single individual at a 
ompound lo
us, there are K possible an
estry stateson the paternal and maternal gametes: thus K2 possible ordered an
estry statesrepresented as a pair of unsigned integers between 1 and K.The 
lass CompositeLo
us should have the following methods1. to return all possible ordered haplotype pairs (as pairs of integers) given theobserved genotypes (some of whi
h may be missing) at the L simple lo
i withinthe 
ompound lo
us. This method should be 
alled only on
e for ea
h lo
usand ea
h individual, and the results should be stored by the Individual obje
t.2. to 
al
ulate the likelihood of ea
h possible ordered state of lo
us an
estry,given the observed genotype data and the an
estry-spe
i�
 haplotype fre-quen
ies.3. to sample an ordered haplotype pair from the list of possible haplotype pairs,given the ordered states of lo
us an
estry and the an
estry-spe
i�
 haplotypefrequen
ies.4. to return the sampled haplotype pair, given the ordered states of lo
us an-
estry, as an array of dimension H � K giving the realized 
ounts of ea
hhaplotype in ea
h subpopulation.5. to return the ve
tor of alleles that spe
ify the haplotype, given a haplotype
oded as an unsigned integer between 1 and H.*** 
omment - it's probably possible to speed up 
omputation by writing spe
ialalgorithms for the simplest situation where the 
ompound lo
us 
onsists of onedialleli
 simple lo
us, and thus ea
h haplotype 
onsists of a single allele that 
an bestored as a bit.We observe unphased multilo
us genotypes y11; : : : ; y1L; : : : ; yN1; : : : ; yNJ on Nunrelated individuals i = 1; : : : ; N typed at j = 1; : : : ; J 
ompound lo
i,At the jth 
ompound lo
us, there areH possible haplotypes. The realized haplotypepair in the ith individual is xij1, xij2. We have K an
estral populations. Thean
estry at lo
us j of individual j on the gth gamete is denoted by Aijg. Thepaternal and maternal admixture proportions of individual i are denoted by ve
tors�i1 and �i2 respe
tively.The an
estry-spe
i�
 haplotype frequen
y is de�ned as the probability of haplo-type h on gth gamete of ith individual at dialleli
 lo
us j, given an
estry from kthpopulation p(Xijg = h j Aijg = k; �jk:) = �jkh



{ 3 {The probability of the observed multilo
us genotype, given the an
estry of thepaternal and maternal gametes at that lo
us, is the sum of the probabilities of allordered haplotype pairs that are 
ompatible with the observed genotype.For ea
h 
ompound lo
us, we 
al
ulate a ve
tor � that spe
i�es for ea
h pos-sible ordered diploid an
estry state the probabilities of the observed (unphased)multilo
us genotype 
onditional on the realized haplotype frequen
ies�j = 0B� p(gj j Aj = 1)...p(gj j Aj = K) 1CA*** 
omment - these ve
tors need only be 
omputed on
e, for all observed mul-tilo
us genotypes, when the haplotype frequen
ies are updated. Should �x thismethod in 
lass CompositeLo
us3. Model for lo
us an
estry, individual admixture and populationadmixtureVariation of an
estry along 
hromosomes of a single gamete is modelled as thesum of K independent Poisson arrival pro
esses, with a parameter � for the sum ofthe intensities of these arrival pro
esses. For lo
i j � 1; j separated by distan
e djp(Aij = k j Ai;j�1;�; �) = ÆAi;j�1k exp��dj + (1� exp��dij)�ikThis in turn spe
i�es the variation of an
estry along 
hromosomes as a Markovpro
ess, for whi
h the transition matri
es between two lo
i separated by a geneti
map distan
e d morgans 
an be derived.Thus for a three-state arrival pro
ess with intensities �, � and 
 of states 1, 2and 3 respe
tively, the instantaneous transition matrix (generator matrix) is givenby G = 0B� �� � 
 � 
� ��� 
 
� � ��� � 1CAFrom this the matrix of haploid transition probabilities (on a single gamete 
anbe derived asP (x) = 1� 0B� �+ (� + 
) expf��dg � � � expf��dg 
 � 
 expf��dg�� � expf��dg � + (�+ 
) expf��dg 
 � 
 expf��dg�� � expf��dg � � � expf��dg 
 + (� + �) expf��dg 1CA



{ 4 {where � = �+ � + 
 and d is the map distan
e between the two lo
i of interest.The transition matrix is thus spe
i�ed by the sum of intensities parameter �, thegeneti
 map distan
e x, and the gamete admixture proportions �1; �2; �3.P = 0B� f + (1� f)�1 (1� f)�2 (1� f)�3(1� f)�1 f + (1� f)�2 (1� f)�3(1� f)�1 (1� f)�2 f + (1� f)�3 1CAwhere �1 = ��+�+
 and f = expf�(�+ � + 
)xg.In the transition matrix, the 
olumns index the population at lo
us j+1 and therows index the population at lo
us j.From the haploid transition matri
es of order K we 
an 
al
ulate the transitionmatrix for ordered diploid states, of order K2.4. Generalising the model for population admixture (not yetimplemented)We should allow for models in whi
h the distribution of admixture in the popula-tion is not unimodal, or where the population in
ludes both admixed and unadmixedindividuals. We 
ould a
hieve this using a mixture of Diri
hlet distributions.Priors p(� j �;�) / Xl �lDi(�l)p(�) = Di(�)Full 
onditional p(� j �;�) =Xl ÆlDi(�l)where Æl = �l n!(Pl �l)n Yl �Pj Ajll�Pj Ajl�! (1)Equation 1 is the multinomial-Diri
hlet likelihood for the realized 
ount of an
es-try state arrivals A, 
onditional on the prior. These weights are the same as thoseused in the Diri
hlet pro
ess.



{ 5 {4.1. Priors on population admixture and sum of intensities parametersIf the option globalrho=1 is spe
i�ed, the sum of Poisson intensities parameter �is assigned the prior p(�) = Ga(� j �0; �1)Default values are 5 for the the shape parameter �0 and 1 for the lo
ation pa-rameter �1.Alternatively, if the option globalrho=0 is spe
i�ed, a hierar
hi
al model is spe
i�edwith a sum of intensities parameter � for ea
h gamete.Parental admixture proportions �i are distributed in the population as Di(�i j �).The hyperparameters � of this Diri
hlet distribution are spe
i�ed with independentgamma prior distributions, with parameters �0; �1.p(�k j �k) = Ga(�k j �0; �1); k = 1; : : : ;KThe admixture proportions of the two parental gametes 
an be drawn indepen-dently from the Diri
hlet distribution (option randommatingmodel=1) or spe
i�edto be the same.5. Model for haplotype frequen
ies (implemented in 
lassAlleleFrequen
ies)If the option priorallelefreq�le is spe
i�ed, at ea
h lo
us the an
estry-spe
i�
haplotype frequen
y ve
tor �jk: has a Diri
hlet prior distribution Di (�1; : : : ; �H).The ve
tor (�1; : : : ; �H) 
an be spe
i�ed by the user. The haplotype frequen
ies�jk: are updated as a 
onjugate Diri
hlet update, using the realized ve
tor of 
ountsof ea
h haplotype on gametes that have an
estry from subpopulation k at lo
us j.If no prior on haplotype frequen
ies are supplied, the haplotype frequen
ies aregiven an uninformative prior.If option �xedallelefreq is spe
i�ed, the haplotype frequen
ies are �xed.5.1. Hierar
hi
al (dispersion) model for an
estry-spe
i�
 allelefrequen
iesFor a given lo
us lo
us and subpopulation, we spe
ify�(1) - an
estry-spe
i�
 haplotype frequen
ies within the admixed population�(2) - haplotype frequen
ies in modern unadmixed des
endants



{ 6 {If the lo
us has H haplotypes, we assume the �'s are distributed as�(i) � Di(�1; : : : ; �n�1; �); i = 1; 2;This spe
i�es that �(1) and �(1) are draws from a Diri
hlet prior, with parameterve
tor of length H, the elements of whi
h sum to �. The dispersion parameter� indexes the dispersion of allele (haplotype) frequen
ies between modern unad-mixed des
endants and the 
orresponding an
estry-spe
i�
 allele frequen
ies in theadmixed population.The priors for � and � are spe
i�ed as� � Ga( ; �)�i� � Be(1; 1)with the 
onstraints that�i � 0:5; � � 0:5 +X�i:*** 
he
k - are we really using these priors? ?The prior distributions for �l and � were 
hosen to be uninformative but to givelittle prior weight at extreme values (0 or 1 for �i, 0 or large values for �). Thishelps to make the 
omputation robust.6. Regression model for dependen
e of out
ome variable on individualadmixture and 
ovariates spe
i�ed by the user (implemented in
lass Regression)The 
urrent version of the program allows the user to spe
ify either a linearregression model for a quantitative trait, or a least-squares regression model for abinary trait.7. Sampling for parental admixture (implemented in 
lass Individual)To sample individual admixture, we introdu
e for ea
h individual an array ofbinary latent variables �, in whi
h rows index 
ompound lo
i, and 
olumns indexgametes.� = (�01; �02; : : : ; �m�1;1; �m�1;2)



{ 7 {where �jg = 1 if at least one arrival has o

urred between j � 1; k and j; k (thus�1g = 1). We de�ne a ve
tor of distan
es d = (d1; : : : ; dm) where dj is the distan
ebetween j � 1 and j. The an
estry states Aj at ea
h lo
us on ea
h gamete aresampled using a hidden Markov model forward-ba
kward algorithm as des
ribedlater. For ea
h gamete, the jump indi
ators �j are then sampled 
onditional onAj ; Aj�1. p(�ij) = Br(1� exp��dj)The likelihood 
an then be written asp(Aij = k j Ai;j�1; �ij ;�; �) = ÆAi;j�1k(1� �ij) + �ij�ik)where dj is the distan
e from lo
us j � 1 to lo
us j.If there is no regression model, the likelihood for parental admixture is then a
onjugate Diri
hlet likelihood, with parameters 
al
ulated by adding the realized
ounts of an
estry states on the gamete at lo
i where there has been at least onearrival (� = 1) to the Diri
hlet prior.*** 
omment - if not already implemented, probably it's qui
ker to sample thetotal number � of arrivals in ea
h interval dire
tly, then set � as an indi
ator variablefor � > 0.If a regression model has been spe
i�ed, the likelihood for parental admixture isthe produ
t of the Diri
hlet likelihood and the regression model likelihood for thisobservation.*** 
he
k how this is done, and where it is implemented7.1. Sampling for population admixture parameters � (implementedin 
lass Latent)The full 
onditional densities for the 
oordinates of the Diri
hlet parameter ve
tor� are proportional to the produ
t of the gamma prior density and the Diri
hletlikelihood. p(�k j ��k; �0; �1) / 0����k +Pdl=1;l 6=k �l��(�k) 1An
��0�1k exp(��k �1 � nXi=1 log �i!) p(�i j �;Ai) = DiK0��i �������+ mXj=1 �ijAij1A



{ 8 {We sample from this density using an adaptive reje
tion sampler for �k. Thisrequires the log density and its derivativelog f(�k) = n log �0��k + dXl=1;l 6=k�l1A�n log �(�k)��k �1 � nXi=1 log �i! :::+(�0�1) log�kdd�k log f(�k) = n	0��k + dXl=1;l 6=k�l1A� n	(�k)� �1 � nXi=1 log �i!+ �0 � 1�kThis density is log-
on
ave sin
ed2d�k2 log f(�k) = n	00��k + dXl=1;l 6=k�l1A� n	0(�k)� �0 � 1�2kand 	0, the trigamma fun
tion, is de
reasing.7.2. Sampling for global sum of intensities parameter �In the 
urrent version of the program, the global sum of intensities parameter issampled 
onditional on the binary latent variables �, using an adaptive reje
tionsampler.Given the �'s the 
onditional distribution of � isp(� j : : : ) =/ �(�) nYi=1 mYj=1(1� expf��djg)�ij expf��dj(1� �ij)g= �(�) exp8<:��Xi;j (1� �ij)dj9=;Yi;j (1� expf��djg)�ij (2)The log density islog f(�) = ��0��0 +Xi;j (1� �ij)dj1A+Xj �:j log(1� expf��djg) + (�1 � 1) log �The �rst derivative of the log density isdd� log f(�) = �0��0 +Xi;j (1� �ij)dj1A+Xj �:jdj expf��djg1� expf��djg + (�1 � 1)�where �:j =Pi �ij



{ 9 {The log density is log 
on
ave sin
ed2d�2 f(�) = �Xj �:jd2j expf�djg(expf�djg � 1)2 � (�1 � 1)�2whi
h is negative for all � � 0.*** Be
ause this sampler 
onditions on � (whi
h is sampled 
onditional on therealized lo
us an
estry states), it mixes slowly. Are we still doing this? Samplershould be repla
ed by a Metropolis step that uses the likelihood 
al
ulated by theHMM, 
onditioning only on the individual admixture parameters � and the observedgenotype data.7.3. Sampling for gamete-spe
i�
 sum of intensities parameter �(implemented in 
lass Individual)To sample � for ea
h gamete, we introdu
e another array of latent variables � torepresent the number of arrivals between ea
h adja
ent pair of linked lo
i. If thetwo lo
i are d morgans apart then � � Pn(d�)The update of � is then a standard 
onjugate update of a Poisson intensityparameter with a gamma prior, 
onditional on the sum of observed arrivals betweenlo
i and the sum of the lengths of intervals between lo
i.For L linked lo
ip(� j : : : ) / �(�) LYj=2 ��j expf�dj�g � Ga0��0 +Xj �j; �1 +Xj dj1AWe sample � 
onditional on �; if � = 1 � � 1 and zero otherwise. Given � we sampled0, the distan
e from the last arrival in the interval between lo
i j�1; j to the lo
usj. If the lo
us j has an
estry k then d0 is distributed exponentially in the region(0; d) with parameter �k� (sin
e given � = 1 we know that there is at least onearrival in the region between 0, d). Integrating 
onstant K for distribution of d0 isK�1 = Z d0 ��k expf�x��kg dx = 1� expf�d��kgIt follows that the 
df for d0 isF (d0) = 1� expf�d0�g1� expf�d��kgThus we 
an sample d0 fromd0 = �1� [1� u(1� expf���kdg℄



{ 10 {It follows that �� 1 � Pn ��(d� d0)�7.4. In
orporating reported an
estry*** is the 
ode for this still in the model? if so, where?We 
an model an individual's reported an
estry proportions as two Diri
hletdistributions, one for ea
h parent. Thus if the reported an
estry for individual iis expressed as � � Did(�i) the full 
onditional distribution of paternal/maternaladmixture is p(�i j �;�i) = Did0��i ������ �+ �i + mXj=1 �ijAij � 11A :8. Hidden Markov model algorithms (implemented in 
lass HMM)The transition matri
es for probabilities of an
estry at ea
h lo
us, 
onditionalon the pre
eding lo
us, spe
ify a Markov pro
ess on ea
h gamete with stationarydistribution �. We 
ombine the two haploid transition matri
es of order K, onefor ea
h gamete, to a diploid transition matrix of order K2, for whi
h the statespa
e is the ordered diploid an
estry states. For ea
h pair of 
hromosomes in ea
hindividual, we 
an spe
ify a hidden Markov modelFor ea
h 
ompound lo
us at whi
h genotypes are observed, we have a ve
tor �that spe
i�es for ea
h possible ordered diploid an
estry state the probabilities ofthe observed (unphased) multilo
us genotype 
onditional on the realized haplotypefrequen
ies. To perform 
omponentwise multipli
ation as a matrix operation, we
onvert the ve
tor � to a diagonal matrixdiag (�j) = 0B� p(gj j Aj = 1) : : : 0... . . . ...0 : : : p(gj j Aj = k) 1CA*** 
omment - is it 
omputationally ineÆ
ient to use a diagonal matrix? Shouldwe just 
ode the 
omponentwise multipli
ation dire
tly?We use standard HMM algorithms to 
al
ulate the likelihood of the observedgenotype data at all lo
i on ea
h 
hromosome in ea
h individual, to sample thehidden states (lo
us an
estry), and to 
al
ulate the marginal 
onditional distributionof an
estry at ea
h lo
us. The �rst step is to 
ompute the forward and ba
kward



{ 11 {probability ve
tors at ea
h lo
us.8.1. Forward-ba
kward algorithmFor ea
h lo
us we 
an 
al
ulate a ve
tor � and a ve
tor � known as the for-ward probabilites and ba
kward probabilities. The forward probabilities are the
onditional probabilities �1; : : : ; �m: the probabilities of ea
h possible hidden state(an
estry) at lo
us j given the observed data (genotypes) at lo
i 1; : : : ; j. Theseprobabilities are given by�(1) = �diag (�1) ; for j = 2; : : : ;m�(j) = �(j�1)Pj�1 (�j) :The ba
kward probabilities are given by�(m) = 1; for j = m� 1; : : : ; 1�(j) = Pj (�j+1)�(j+1)With K subpopulations, there are K2 possible ordered diploid states of an
estry.Thus � and � are ve
tors of length K2.8.2. Marginal distribution of lo
us an
estry and likelihoodThe marginal distribution of an
estry at ea
h lo
us is sampled as�(j)1;k�(j)k;1 = p(Aj = k; g1; : : : ; gm) / p(Aj = k j g1; : : : ; gm)The likelihood of the model parameters with the observed genotype data is 
al
u-lated as p(g1; : : : ; gm) = KXk=1 p(Aj = k; g1; : : : ; gm) = �(j)�(j):This expression for the likelihood 
an be 
al
ulated at any j.*** 
omment - add a method to 
al
ulate the log-likelihood of ea
h genotype atea
h 
ompound lo
us, as a 
he
k on genotyping errors.8.3. Sampling lo
us an
estryPosterior samples of lo
us an
estry are required to update individual admixture,and to update the haplotype frequen
ies. Tests for linkage (asso
iation with lo
us



{ 12 {an
estry) 
an be 
al
ulated more eÆ
iently from the marginal distribution of lo
usan
estry 
onditional on the model parameters, without sampling lo
us an
estry.The lo
us an
estry A1; : : : Am are sampled in sequen
e, starting at the right-hand end of the 
hromosome and pro
eeding ba
kwards. State Am is sampled fromAm � Mu(�(m)). An
estry states Am�1; : : : ; A1 are then sampled 
onditional onthe previously sampled states. Sin
e the 
olumns of Pj represent the distributionof an
estry at lo
us j given an
estry at lo
us j + 1 we sample Aj � Mu(V ) whereV is the 
omponent wise produ
t of �(j) and the Aj+1th 
olumn of Pj.9. Sampling regression parameters (implemented in 
lassRegressionModelTo redu
e posterior 
ovarian
e between the regression parameters, the 
ovariatesX2 should be standardized about their sample mean. Where 
ovariates X2 arenot observed dire
tly (as for individual admixture), their sample mean is estimatedduring the burn-in period. 9.1. Linear regressionThe model is spe
i�ed as y � N(X�; �)where y is the response, X are the independent variables (
ovariates and individ-ual admixture proportions), � is the ve
tor of regression parameters and � is thepre
ision.With the referen
e prior �(�; �) = ��1, the marginal posterior distribution of(�) isp(�; � j z) = St�� �����n; 12XtX(n� k)��1n ; n� k� � N�� �����n; 12XtX(n� k � 2)��1n �where �n = (X tX)�1Xty �n = 12(y �X�n)tyThe marginal density of any subve
tor of a multivariate Student distribution St(x j�;�; �) is Student, with mean ve
tor and inverse of the pre
ision matrix given bythe 
orresponding subve
tor of � and submatrix �.*** 
omment - algorithm for logisti
 regression should be do
umented, preferablyin terms of a generalized linear model.



{ 13 {10. Sampling haplotype pairs and haplotype frequen
ies (implementedin 
lasses Composite Lo
us and AlleleFrequen
ies)Under a model with no dispersion, it is straightforward to sample the orderedhaplotype pairs on
e we have sampled the ordered states of lo
us an
estry on ea
hgamete.The simplest way to sample ordered haplotype pairs at ea
h lo
us in ea
h indi-vidual is to 
ondition on the an
estry-spe
i�
 haplotype frequen
ies, as well as theobserved genotypes, and the ordered state of lo
us an
estry.Alternatively, we 
an integrate out the an
estry-spe
i�
 haplotype frequen
iesand update ea
h individual's haplotypes 
onditional on the Diri
hlet prior � andthe realized haplotype 
ounts in all other individuals.The haplotype frequen
ies � 
an then be sampled 
onditional on the prior andthe realized 
ounts, as a 
onjugate Diri
hlet distribution.The full 
onditional for updating a pair xi of haplotypes in the ith individual,
onditional on the realized haplotype 
ounts in all other individuals, isP [xi = (g; h) j X�i; Y ℄ / (ng + �g) (nh + �h)where ng and nh are the realized 
ounts of haplotypes g and h in all other indi-viduals in the subpopulations of an
estry of paternal and maternal gametes at thislo
us, �g and �h are the 
orresponding elements of the Diri
hlet parameter ve
tors,and Xi is the ve
tor of realized haplotype pairs in all other individuals.Niu T et al (AJHG, 2002) 
all this algorithm predi
tive updating.*** problem with this algorithm - sampling of individuals are not 
onditionallyindependent given the population parameters. This won't be easy to parallelize- for parallel version, we maybe should use the simpler algorithm 
onditioning onan
estry-spe
i�
 haplotype frequen
ies instead.*** 
he
k the 
ode - is this really what we're doing?*** to speed up 
omputation for large haplotypes, we may have to use partition-ligation (Niu 2002)10.1. Sampling the Diri
hlet parameters for an
estry-spe
i�
haplotype frequen
ies under a dispersion modelUnder a dispersion model, the Diri
hlet parameters for an
estry-spe
i�
 haplo-type frequen
ies are not spe
i�ed as 
onstants but have a sto
hasti
 dependen
eon the frequen
ies in a hypotheti
al an
estral population from whi
h both modernunadmixed des
endants and the admixed population under study are derived.



{ 14 {The Diri
hlet parameter ve
tor is reparameterized as a ve
tor of proportions �and sum of Diri
hlet parameters �.The joint density for the an
estry-spe
i�
 haplotype frequen
ies � at a 
ompoundlo
us with H haplotypes, 
onditional on �, � is given by the Diri
hlet density�(� j �;�) = �(�)�(� �P�i)Q�(�h)�n)��P �h�1 H�1Yh=1 ��h�1iThis is also the likelihood fun
tion for the dispersion parameter � and the Diri
h-let parameters �, given realized haplotype frequen
ies �.The problem is to sample the Diri
hlet proportion ve
tor �, 
onditional on therealized haplotype 
ounts. If � is univariate (in other words, if the lo
us is dialleli
)we 
an sample � dire
tly from the produ
t of two beta-binomial likelihoodsp(� j �; ni; r(i)) / 1�((� � �)�(�))2 2Yi=1��� � �+ ni � r(i)����+ r(i)�where i = 1 for unadmixed modern des
endants and i = 2 for the admixed popu-lation and ni and r(i) are the realized haplotype 
ounts in the sampled individuals.r1 of n1 gametes inFor multivariate � we have to use a Metropolis update. We propose �0 from�0� � Di��� �q(�0) = nYh=1 f�(�h)g�1��0h� ��hp(� j r) = 1QHh=1 �(��h)2 2Yi=1 HYh=1����h + r(i)h �*** 
omment - maybe a better proposal density would be to draw elements �hin sequen
e, at ea
h step subtra
ting the realized 
ount for haplotype h from thetotal haplotype 
ount, and subtra
ting the drawn element �h from the sum �.� is sampled by a random walk. To maximize step size we propose �0; �0, where�0 = �0�� . Thus a new �0 is only a 
hange in dispersion.p(� j �; ni; r(i)) / 1� expn��2(log � �  )2o f�(�)g2m mYj=1 nYl=1 ��(1)lj �(2)lj ��lj�1�(�lj)



{ 15 {*** 
omment - 
he
k this please.We 
an then sample the haplotype frequen
ies � 
onditional on the Diri
hletparameters �; � and the realized haplotype 
ounts.11. Constru
tion of s
ore tests based on the missing-data likelihoodWe write U(�;Y ) for the observed-data s
ore dd� logf(Y j �), and I(�;Y ) for theobserved information � d2d�2 logf(Y j �).The 
omplete-data log-likelihood 
an be partitioned into the observed data log-likelihood and the missing-data log-likelihood (Dempster, Laird and Rubin 1977).log f(Y;X j �) = log f(Y j �) + log f(X j Y; �) (3)Di�erentiating with respe
t to � and taking expe
tations over the posterior dis-tribution of the missing data X yieldsEXjY;� � dd� log f(Y;X j �)� = U(�;Y )as EXjY;� � dd� log f(X j Y )�, the expe
tation of a s
ore over the probability of thedata, is zero. We 
an thus evaluate the s
ore U(�;Y ) as the posterior expe
tationof the 
omplete-data s
ore dd� log f(Y;X j �)Di�erentiatng again, and taking expe
tations over the posterior distribution leadsto the result�EXjY;� � d2d�2 log f(Y;X j �)� = I(�;Y ) + VarXjY;� � dd� log f(Y;X j Y; �)�This result 
an be interpreted asComplete information = observed information + missing informationThe algorithm for the s
ore test, applied to a Bayesian full probability model inwhi
h the parameter � is �xed at its null value �0, with samples from the posteriordistribution of the missing data X given the observed data Y generated by MCMCsimulation, is as follows:-1. At ea
h realization of the 
omplete data, 
ompute the realized s
ore ve
torand information matrix based on the 
omplete-data likelihood at �0, and a
-
umulate the results to evaluate:-� the s
ore U as the posterior mean of the realized s
ore.



{ 16 {� the 
omplete information as the posterior mean of the realized informa-tion� the missing information as the posterior varian
e of the realized s
ore.2. At the end of the run, 
al
ulate the observed information V as the 
ompleteinformation minus the missing information3. Cal
ulate the s
ore test statisti
 as UV �1=2 for s
alar U, or U 0V �1U where Uis a ve
tor. 11.1. Rao-Bla
kwellizationIn tests for the e�e
t of lo
us an
estry, the 
omputational eÆ
ien
y is improvedby using a Rao-Bla
kwellized estimator of the s
ore as des
ribed below. Supposethat we are sampling the posterior distribution of an unobserved variable X, whi
hhas a likelihood in the exponential family for the parameter of interest �. For anexponential likelihood, the s
ore for a single observation xi has the form observedminus expe
ted, weighted by a fun
tion ai of a dispersion parameter �.xi � �iai(�)If we 
an 
ompute the marginal distribution of xi at ea
h iteration, 
onditionalon the model parameter � and observed data Y , we 
an 
an evaluate the posteriorexpe
tation of the s
ore asU(�;Y ) = E�jX;Y �EXjY;��xi � �ai(�) ��= E�jX;Y �EXjY;� (xi)� �ai(�) �The missing information is then the sum of two 
omponents: the posterior vari-an
e of the 
onditional expe
tation of the 
omplete-data s
ore, and the posteriorexpe
tation of the 
onditional varian
e of the 
omplete-data s
ore.VarXjY;� [U(�;Y;X)℄ = Var�jY �EXj�;Y [U(�;Y;X)℄�+ EY jX �VarXjY;� (U(�;Y;X))�= Var�jY �EXjY;� (xi)� �ai(�) �+ E�jY �VarXjY;� (xi)� �ai(�) �



{ 17 {The �rst term measures the information that is missing be
ause of un
ertaintyabout the model parameter �, and the se
ond term measures the information thatis missing be
ause of un
ertainty about the latent variable X.11.2. S
ore 
ovarian
e with other model parametersWe test ea
h lo
us for asso
iation of a latent variable X1 at the lo
us with theout
ome Y under study, while adjusting for 
ovariates X2, in
luding geneti
 ba
k-ground, in a generalized linear model of the form g (E [Y ℄) = [X1;X2℄0[�1; �2℄, whereg() is a link fun
tion. As X1 is not observed dire
tly, we sample from its posteriordistribution given the observed genotype data. For a likelihood in the exponen-tial family with 
anoni
al link fun
tion, the s
ore ve
tor for the ith observation at�1 = 0 has the formU(�;Y;X) = " U(�1;Y;X)U(�2;Y;X) # = pi� " xi1 �yi � g�1[�i℄�xi2 �yi � g�1[�i℄� #where where � is the dispersion parameter, pi is a known prior weight, and�i = x0i2�2.The information matrix has the formV(�;Y;X) = " V11 V12V12 V22 # = pi� " x0i1xi1 x0i1xi2x0i2xi1 x0i2xi2 # dd�i g�1[�i℄If there is 
ovarian
e between U(�1) and U(�2), the posterior varian
e of U(�1;Y;X)will in
lude a 
omponent attributable to un
ertainty in the model parameters �2.This is undesirable for two reasons. First, it in
reases the 
omputational workload,as longer runs are required to evaluate the di�eren
e between the 
omplete andmissing information. Se
ond, it 
ompli
ates the interpretation of the proportion ofinformation extra
ted as a measure of the eÆ
ien
y of the design, in relation to anideal experiment in whi
h the variables Y and X are observed dire
tly.To eliminate this 
ovarian
e, we 
an standardize the 
omplete-data s
ore and in-formation algebrai
ally. Over the probability distribution of Y in hypotheti
al repe-titions of the experiment, the asymptoti
 distribution of the s
ore ve
tor U(�1; Y;X)given U(�2;Y;X) is multivariate normal with mean V12V �122 U(�2;Y;X) and varian
eV11 � V12V �122 V21For ea
h realization of the 
omplete data, we 
al
ulate the 
ovarian
e matrix V bysumming over all observations, and use this to 
al
ulate the 
onditional expe
tationEY jX;�1;�2 [U(�1;Y;X) j U(�2;Y;X)℄



{ 18 {and its 
onditional varian
e over the probability distribution of Y .The s
ore 
an now be 
al
ulated asEX;�2jY;�1 �U (�1;Y;X) �EY jX;�1;�2 (U(�1;Y;X) j U [�2;Y;X℄)�= EX;�2jY;�1 [U (�1;Y;X)℄�EX;�2jY;�1 �EY jX;�1;�2 (U(�1;Y;X) j U [�2;Y;X℄)�The se
ond term on the right is zero as it is the expe
tation of a s
ore over theprobability distribution of the data.= EX;�2jY;�1 [U(�1;Y;X)℄ = U(�1;Y )The 
omplete information is evaluated as the posterior expe
tation over X ofV11�V12V �122 V21, and the missing information is evaluated as the posterior varian
eof U(�1;Y;X) �EY jX;�1;�2 [U(�1;Y;X) j U(�2;Y;X)℄This algorithm 
an be extended to exploit the Rao-Bla
kwellization des
ribedabove, if we are able to evaluate the marginal 
onditional expe
tation and varian
eof the latent variable xi1, given a model parameter � and the observed data Y .*** this Rao-Bla
kwellization is not yet implemented for regression s
ore tests,but should be soonTo 
al
ulate the posterior expe
tation of the 
omplete-data s
ore U1, we repla
exi1 in the 
omplete-data s
ore and x2i1 in the 
omplete-data information matrix bytheir posterior expe
tations. The missing information, standardized for U2, isVarXjY;�1 �U1 �EY jX;�2 (U1 j U2)�whi
h 
an be partitioned into two 
omponents= Var�;�2jY �EXj�;Y �U1 �EY jX;�2 (U1 j U2)��+E�;�2jY �VarXjY;�;�2 �U1 �EY jX;�2 [U1 j U2℄��= Var�;�2jY �EXj�;Y �U1 �EY jX;�2 (U1 j U2)�� + EY jX;�2 �VarXjY;�2 (U1)�as the varian
e of EY jX;�2 [U1 j U2℄ over the distribution of X given Y; �; �2 iszero.= Var�;�2jY �EXj�;Y �U1 �EY jX;�2 (U1 j U2)��+E�;�2jY �VarXjY;�;�2 (xi1) �yi � g�1[�i℄��Again, these two terms 
an be interpreted in terms of the sour
es of un
ertaintythat 
ontribute to the missing information.



{ 19 {12. S
ore tests for linkage with lo
us an
estry12.1. A�e
teds-only s
ore test for linkageWe de�ne Ai as the number of gene 
opies at the lo
us under study that havean
estry from the high-risk population. �i1 and �i2 are the paternal and maternaladmixture proportions.The parameter under test is the an
estry risk ratio r. The likelihood fun
tion isa trinomial (sum of two bernoulli variates).The s
ore U with respe
t to log r at log r = 0 is given byU = 12 nXi=1(Ai � �i1 � �i2)The information I is given byI = 14 nXi=1 [�i1 (1� �i1) + �i2 (1� �i2))℄*** 
ode in program may 
ompute s
ore and info for ea
h gamete separately, then
ompute info for 1 individual by adding varian
es 
orre
ted for 
ovarian
e. Simplerto 
al
ulate it as above.Rao-Bla
kwellised estimate of E(U) 
an be obtained by repla
ing Ai by its 
on-ditional expe
tation, obtained from the HMM marginal 
onditional distribution.Conditional varian
e of U is obtained similarly from this marginal distribution.12.2. Regression-based s
ore tests (implemented in 
lass S
oreTests)These s
ore tests test lo
i one at a time for asso
iation of a latent variable X1(an
estry or haplotype 
ount) at the lo
us with the out
ome Y under study, whileadjusting for 
ovariates X2, in
luding geneti
 ba
kground, in a generalized linearmodel of the form g (E [Y ℄) = [X1;X2℄0[�1; �2℄, where g() is a link fun
tion.The s
ore and information are 
omputed from the expressions given earlier for ageneralized linear model with 
anoni
al link fun
tion.12.3. Regression-based s
ore test for linkage with binary out
ome(implemented in 
lass S
oreTests)For a binary out
ome, the link fun
tion is logisti
, the dispersion parameter is 1,and the derivative of the inverse link fun
tion is



{ 20 {f(1� f) where f is the expe
ted value of Y given X, 
al
ulated by applying thethe inverse link fun
tion to X 0�.12.4. S
ore test for linkage with quantitative trait (linear regressionmodel)For a quantitative trait, the link fun
tion is the identity fun
tion, the dispersionparameter is the pre
ision, and the derivative of the inverse link fun
tion is 1.13. S
ore tests for asso
iation with alleles or haplotypes13.1. S
ore tests for alleli
 asso
iation 
onditional on lo
us an
estry(not yet implemented)For a lo
us with H haplotypes with an
estry spe
i�
 haplotype frequen
ies � =(�1; : : : ; �s�1), the likelihood of observing r = (r1; : : : ; rH) where rh is the realized
ount of haplotype h. The 
omplete-data likelihood is;L = (1�X�k)rs s�1Yk=1�rkklogL = rs log(1�X�k) + s�1Xk=1 rk log �kdd�i logL = ri�i � rn(1�P�k)d2d�2i logL = � ri�2i � rn(1�P�k)2d2d�i�j logL = � rn(1�P�k)214. Computing the log-likelihood fun
tion (not yet implemented)The p-value 
omputed from the s
ore test is useful when s
reening many nullhypotheses to de
ide whi
h ones to investigate further. For quantitative inferen
e,we require the log-likelihood for the s
alar parameter �. For admixture mapping,inferen
e is based on an
estry X at the lo
us under study, and the probability of theobserved genotype data Y at all lo
i, given X and model parameters whi
h in
ludeallele frequen
ies and parental admixture, does not depend upon the parameterunder test (the an
estry risk ratio �). Although P (Y j X;�; �) is an integral overstates at other lo
i X? of the form PP (Y;X? j X;�; �), the model spe
i�es that



{ 21 {the out
ome is dependent only upon an
estry at the lo
us under test and �, so thatP (Y;X? j X;�; �) does not depend on �. It follows thatP (Y j X;�; �) = P (Y j X;�; �0)Similarly, in a geneti
 asso
iation study of the e�e
t of unobserved haplotypes,the probability of the unphased genotype data given the pair of haplotypes doesnot depend upon the parameter under test (the e�e
t of the haplotype upon theout
ome. In this situation it is possible to 
ompute the log-likelihood fun
tion di-re
tly as a fun
tion of �, if we 
an evaluate the marginal 
onditional distributionP (X j Y; �; �0).Thompson and Guo (1991) show that the marginal log-likelihood ratio 
an be eval-uated as the expe
tation of the 
omplete-data log-likelihood ratio over the posteriordistribution of the missing data under the null hypothesis.L (�;Y ) = P (Y j �)P (Y j �0) = EXjY;�0 � P (Y;X j �)P (Y;X j �0)�We 
an rewrite this expe
tation in Rao-Bla
kwellized form as the expe
tation ofa 
onditional expe
tationL (�;Y ) = E�jY;�0 �EXjY;�;�0 � P (X j �; �)P (Y j X;�; �)P (X j �; �0)P (Y j X;�; �0)��If P (Y j X;�; �) = P (Y j X;�; �0)L (�;Y ) = E�jY;�0 �EXjY;�;�0 � P (X j �; �)P (X j �; �0)��For dis
rete X with �nite range of values, the inner expe
tation 
an be evaluatedexa
tly, giving L (�;Y ) = E�jY;�0  XX P (X j �; �)P (X j �; �0)P (X j Y; �; �0)!To evaluate the log-likelihood fun
tion, we 
an 
ompute the log of this likelihoodratio at multiple values of � in a single run of the MCMC sampler.Examples of this algorithm: Patterson 2004, Holmans 2002 (as
ribed to Ri
e)15. Model 
hoi
e and model diagnosti
sTo 
hoose between alternative models, we should 
ompute the marginal likelihoodof the model (eviden
e). This is 
urrently implemented only for analyses of a singleindividual.



{ 22 {We also provide model diagnosti
s, based on s
ore tests or on the posterior pre-di
tive 
he
k probability, to allow the user to identify spe
i�
 ways in whi
h themodel �ts the data poorly.15.1. Computation of marginal likelihood, implemented in 
lass ChibChib (1995) suggests 
al
ulating the marginal likelihood p(y) aslog p(y) = log p(y j ��) + log p(��)� log p(�� j y)This follows from Bayes theorem and holds for any ��. Typi
ally, it is straight-forward to evaluate p(y j ��) and log p(��), thus we just need an estimate of theposterior ordinate p(�� j y). This is most eÆ
iently estimated if �� is at or nearits posterior mode.If we spe
ify a non-hierar
hi
al model (independent priors on the admixture pro-portions of ea
h individual, and a global sum of intensities parameter), the modelparameters � are �;� and �: respe
tively individual admixture, an
estry-spe
i�
allele frequen
ies and sum of intensities.The posterior density of � 
an be written asp(� j y) = Z p(� j y;z)p(z j y)dzConditional on the latent variables z - an
estry states at ea
h lo
us and thenumber of arrivals in ea
h interval between lo
i - the full 
onditional density of �is the produ
t of full 
onditional densities of �;� and �, whi
h are 
onjugate and
an be evaluated dire
tly at ea
h realization of z.We 
an thus evaluate the posterior ordinate p(�� j y) with the following MonteCarlo estimate. p̂(�� j y) = 1M MXi=1 p(�� j y;z(i)):The posterior modes of �;� and � are estimated during the burn-in period.In the 
urrent version of the program, this method is implemented only for dataon a single individual.*** for given allele frequen
ies, a more eÆ
ient algorithm would be to 
al
ulatethe likelihood at �� using the HMM, without 
onditioning on lo
us an
estry states.Then use Metropolis proposal steps to estimate the posterior ordinate. With a prioron allele frequen
ies, this would be more 
ompli
ated.



{ 23 {*** 
an this be extended to a hierar
hi
al model for admixture and sum inten-sities? We would have to group the parameters into blo
ks (one blo
k for ea
hindividual, one blo
k for ea
h population-level parameter).**** should test other algorithms for 
al
ulation of eviden
e: annealing, or nestedsampling15.2. S
ore test for mis-spe
i�
ation of an
estry-spe
i�
 allelefrequen
ies at a dialleli
 lo
usWith k populations, the probabilities of observing 0, 1 or 2 
opies of allele 1,
onditional on parental admixture, are given by;P (X = 0) = �(0) = kXi kXj qiqj�(P )i �(M)jP (X = 1) = �(1) = kXi kXj qipj�(P )i �(M)j + kXi kXj piqj�(P )i �(M)jP (X = 2) = �(2) = kXi kXj pipj�(P )i �(M)j :where pi is the frequen
y of allele 1 in population i and qi = 1� pi.The s
ore is obtained by di�erentiating the logarithms of these expressions withrespe
t to pi; i = 1; : : : ; k.U (0) = �U (0)1 ; : : : ; U (0)k �U (0)i = 1�(0) 0��2qi�ii � kXj 6=i qj(�ij + �ji)1AU (1) = �U (1)1 ; : : : ; U (1)k �U (1)i = 1�(1) 0�2(qi � pi)�ii + kXj 6=i(qj � pj)(�ij + �ji)1AU (2) = �U (2)1 ; : : : ; U (2)k �U (2)i = 1�(2) 0�2pi�ii + kXj 6=i pj(�ij + �ji)1AWhere �ij = �(P )i �(M)j .
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I(0)ii = �U (0)i �2 � 2�ii�(0)I(0)ij = U (0)i U (0)j � (�ij + �ji)�(0)I(1)ii = �U (1)i �2 + 4�ii�(0)I(1)ij = U (1)i U (1)j + 2(�ij + �ji)�(1)I(2)ii = �U (2)i �2 � 2�ii�(2)I(2)ij = U (2)i U (2)j � (�ij + �ji)�(2)With this test 
onditional on gamete admixture, we are inferring mis-spe
i�edallele frequen
ies by 
omparing the observed and expe
ted allele 
ounts given ea
hindividual's admixture proportions. The s
ores for misspe
i�
ation of allele frequen-
ies in di�erent subpopulations at the same lo
us are 
orrelated with ea
h other.By 
onditioning on lo
us an
estry we 
an derive tests for mis-spe
i�ed allelefrequen
ies that are independent a
ross subpopulations.*** is this now implemented in the 
ode?15.3. Posterior predi
tive 
he
k test for residual populationstrati�
ation*** the 
urrent version of the program uses for this test all lo
i that are at leastx 
M apart (what is x?). This is not a pure test for strati�
ation*** the 
ode for this test should be �xed to use only unlinked lo
i* we might have a more eÆ
ient test if we use a weighted sum of allele s
ores atall lo
i on ea
h 
hromosome, obtained as the �rst prin
ipal 
omponent.This test exploits the argument that if all population strati�
ation has beena

ounted for, there should be no residual alleli
 asso
iation between unlinked lo
i.We 
onstru
t test statisti
s and 
al
ulate them for the observed and repli
ate datasets.We 
hoose a single simple lo
us from ea
h 
hromosome, di
hotomize the allelesinto two bins at any lo
us where there are more than two alleles, and 
ompute forea
h individual the observed minus expe
ted 
ount of allele 1, where the expe
ted
ount is a weighted average of the an
estry-spe
i�
 allele frequen
ies with weightsgiven by the admixture proportions of the two gametes. We then 
ompute the
ovarian
e matrix between these observed minus expe
ted 
ounts. In other words,



{ 25 {these are partial 
ovarian
es.The matrix of 
ovarian
es between 
ounts of allele 1 at these unlinked lo
i is
al
ulated as matrix A = faijg whereaij =Xk [Xik � E(Xik j �k)℄[Xjk � E(Xjk j �k)℄At ea
h realization of the sampled alleles and allele frequen
ies, we 
omputethe �rst eigenvalue of this matrix, divided by the tra
e (sum of eigenvalues). Ifthis proportion is higher than expe
ted by 
han
e, it indi
ates that there is anunderlying fa
tor giving rise to alleli
 asso
iations between unlinked lo
i. This ratioT is 
omputed as Tobs for the observed alleles and as Trep for a repli
ate datasetwith alleles sampled 
onditional on the an
estry-spe
i�
 frequen
ies and gameteadmixture proportions. The posterior predi
tive 
he
k probability is the posteriorfrequen
y with whi
h Trep > Tobs.15.4. Posterior predi
tive 
he
k test for dispersion between prior andobserved allele frequen
iesnjk - number of individuals with an
estry k at marker jrjk - ve
tor of 
ounts of observed alleles at marker j with an
estry k�jk - allele frequen
y at marker j in population kGenerate r0jk � Mu(�jk; njk)Compare Tobs (likelihood of rjk) and Trep (likelihood of r0jk).This test statisti
 is 
omputed for ea
h lo
us in ea
h subpopulation, and as asummary test over all lo
i in ea
h subpopulation.


