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1. Introduction

These notes briefly describe the statistical model and the algorithms used in
ADMIXMAP. It is intended for users requiring more detail of the model than is
given in the manual and in our published papers, and for developers working on the
source code. For documentation on how to use the program, see the user manual.

Note: This document is a rough draft and may not accurately represent the
current program. Last Updated 28 Jan 2005.

2. Model for genotypes and haplotypes at a compound locus
(implemented in class CompositeLocus)

At a simple locus, there are S possible alleles, numbered from 1 to S. We observe
unphased genotypes at some of these loci. Each possible unphased genotype can
be represented as a pair of unsigned integers. If the two integers in this pair are
different, the individual is heterozygous. Where the genotype is missing, both alleles
are missing. Missing alleles can be represented as 0.

A compound locus is a sequence of one or more adjacent simple loci that are
separated by zero map distance.

A haplotype is a sequence of alleles at the L simple loci within a compound locus.
The alleles that specify each possible haplotype can thus be represented by a vector
of unsigned integers.

The number H of possible haplotypes at a compound locus with sq,..., sz, alleles
at the L simple loci is H = s182...51. Thus each possible haplotype can be
represented by an unsigned integer between 1 and H.

For each individual at each compound locus, there is a pair of haplotypes which
can be represented by a pair of unsigned integers between 1 and H. If the genotype
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at any simple loci are missing, or there is more than one locus in the compound
locus and the individual is heterozygous at more than one of these simple loci, the
observed genotype data do not uniquely assign a pair of haplotypes.

For a single individual at a compound locus, there are K possible ancestry states
on the paternal and maternal gametes: thus K? possible ordered ancestry states
represented as a pair of unsigned integers between 1 and K.

The class CompositeLocus should have the following methods

1. to return all possible ordered haplotype pairs (as pairs of integers) given the
observed genotypes (some of which may be missing) at the L simple loci within
the compound locus. This method should be called only once for each locus
and each individual, and the results should be stored by the Individual object.

2. to calculate the likelihood of each possible ordered state of locus ancestry,
given the observed genotype data and the ancestry-specific haplotype fre-

quencies.

3. to sample an ordered haplotype pair from the list of possible haplotype pairs,
given the ordered states of locus ancestry and the ancestry-specific haplotype
frequencies.

4. to return the sampled haplotype pair, given the ordered states of locus an-
cestry, as an array of dimension H x K giving the realized counts of each
haplotype in each subpopulation.

5. to return the vector of alleles that specify the haplotype, given a haplotype
coded as an unsigned integer between 1 and H.

*** comment - it’s probably possible to speed up computation by writing special
algorithms for the simplest situation where the compound locus consists of one
diallelic simple locus, and thus each haplotype consists of a single allele that can be
stored as a bit.

We observe unphased multilocus genotypes vy11,-..,Y15:---,YN1,---,Yyng on N
unrelated individuals: = 1,..., N typed at j = 1,....J compound loci,
At the jth compound locus, there are H possible haplotypes. The realized haplotype
pair in the ith individual is z;j1, z;j2. We have K ancestral populations. The
ancestry at locus j of individual j on the gth gamete is denoted by A;j;. The
paternal and maternal admixture proportions of individual 7 are denoted by vectors
0,1 and 6,9 respectively.

The ancestry-specific haplotype frequency is defined as the probability of haplo-
type h on gth gamete of ith individual at diallelic locus 7, given ancestry from kth
population

p(Xijg = h| Aijg =k, ¢jk.) = bjkn
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The probability of the observed multilocus genotype, given the ancestry of the
paternal and maternal gametes at that locus, is the sum of the probabilities of all
ordered haplotype pairs that are compatible with the observed genotype.

For each compound locus, we calculate a vector A that specifies for each pos-
sible ordered diploid ancestry state the probabilities of the observed (unphased)
multilocus genotype conditional on the realized haplotype frequencies

plgj | 4;=1)
Aj = .

p(gj | 4; = K)

*** comment - these vectors need only be computed once, for all observed mul-

tilocus genotypes, when the haplotype frequencies are updated. Should fix this
method in class CompositeLocus

3. Model for locus ancestry, individual admixture and population
admixture

Variation of ancestry along chromosomes of a single gamete is modelled as the
sum of K independent Poisson arrival processes, with a parameter p for the sum of
the intensities of these arrival processes. For loci j — 1,5 separated by distance d;

p(Aij =k | Ajj-1,0,p) = da,;_kexp—pd; + (1 — exp —pd;;)0ix

This in turn specifies the variation of ancestry along chromosomes as a Markov
process, for which the transition matrices between two loci separated by a genetic
map distance d morgans can be derived.

Thus for a three-state arrival process with intensities a, 8 and 7y of states 1, 2
and 3 respectively, the instantaneous transition matrix (generator matrix) is given

by

—B-v B Y
G = Q —a—7 0%
Q I} —a—f

From this the matrix of haploid transition probabilities (on a single gamete can
be derived as

P(z)

a+ (B+v)exp{—pd} B — Bexp{—pd} v — yexp{—pd}
= a—aexp{—pd} B+ (a+7)exp{—pd} v — yexp{—pd}
o — aexp{—pd} B —Bexp{-pd} v+ (a+pB)exp{—pd}

=
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where p = o+ 8 + v and d is the map distance between the two loci of interest.
The transition matrix is thus specified by the sum of intensities parameter p, the
genetic map distance x, and the gamete admixture proportions 61, 6o, 03.

f+@=16  (1-f)b (L—f)0s
P = (1=f)0 [+ =f)b (1-[)bs
(1-1)0 (1=f)2 f+(1-F)0s

where 0; = %ﬁ-l-v and f = exp{—(a+ S+ v)z}.

In the transition matrix, the columns index the population at locus 7+ 1 and the
rows index the population at locus j.

From the haploid transition matrices of order K we can calculate the transition
matrix for ordered diploid states, of order K2.

4. Generalising the model for population admixture (not yet
implemented)

We should allow for models in which the distribution of admixture in the popula-
tion is not unimodal, or where the population includes both admixed and unadmixed
individuals. We could achieve this using a mixture of Dirichlet distributions.

Priors
p(6 o, m) o Y mDi(oy)
!
p(m) = Di(r)
Full conditional

p(@ | a,m) = Z 0 Di(ay)
l

where

aZj Aji

l
>, A

n!
oy = m 5 ) H ( (1)

Equation 1 is the multinomial-Dirichlet likelihood for the realized count of ances-
try state arrivals A, conditional on the prior. These weights are the same as those
used in the Dirichlet process.
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4.1. Priors on population admixture and sum of intensities parameters

If the option globalrho=1 is specified, the sum of Poisson intensities parameter p
is assigned the prior

p(p) = Ga(p | po, p1)

Default values are 5 for the the shape parameter py and 1 for the location pa-
rameter pi.
Alternatively, if the option globalrho=0 is specified, a hierarchical model is specified
with a sum of intensities parameter p for each gamete.

Parental admixture proportions 6; are distributed in the population as Di(6; | a).
The hyperparameters a of this Dirichlet distribution are specified with independent

gamma prior distributions, with parameters €g, €;.

p(Ozk \ek):Ga(ak ‘60,61), kZl,...,K

The admixture proportions of the two parental gametes can be drawn indepen-
dently from the Dirichlet distribution (option randommatingmodel=1) or specified
to be the same.

5. Model for haplotype frequencies (implemented in class
AlleleFrequencies)

If the option priorallelefreqfile is specified, at each locus the ancestry-specific
haplotype frequency vector ¢;;. has a Dirichlet prior distribution Di (o, ..., am).
The vector (aq,...,ap) can be specified by the user. The haplotype frequencies
¢jk. are updated as a conjugate Dirichlet update, using the realized vector of counts
of each haplotype on gametes that have ancestry from subpopulation & at locus j.

If no prior on haplotype frequencies are supplied, the haplotype frequencies are
given an uninformative prior.

If option fixedallelefreq is specified, the haplotype frequencies are fixed.

5.1. Hierarchical (dispersion) model for ancestry-specific allele
frequencies

For a given locus locus and subpopulation, we specify
#() - ancestry-specific haplotype frequencies within the admixed population
#? - haplotype frequencies in modern unadmixed descendants
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If the locus has H haplotypes, we assume the ¢’s are distributed as

¢(Z) ~ Di(ﬂla"'aunflan)a 1=1,2,

This specifies that ¢(!) and ¢() are draws from a Dirichlet prior, with parameter
vector of length H, the elements of which sum to 5. The dispersion parameter
7 indexes the dispersion of allele (haplotype) frequencies between modern unad-
mixed descendants and the corresponding ancestry-specific allele frequencies in the
admixed population.

The priors for i and 7 are specified as

no o~ Ga(¢17)
Mg

2 Be(1,1
p (1,1)

with the constraints that
pi 205, 7205+ ui

*** check - are we really using these priors? ?

The prior distributions for y; and 1 were chosen to be uninformative but to give
little prior weight at extreme values (0 or 1 for p;, 0 or large values for 7). This
helps to make the computation robust.

6. Regression model for dependence of outcome variable on individual
admixture and covariates specified by the user (implemented in
class Regression)

The current version of the program allows the user to specify either a linear
regression model for a quantitative trait, or a least-squares regression model for a
binary trait.

7. Sampling for parental admixture (implemented in class Individual)

To sample individual admixture, we introduce for each individual an array of
binary latent variables €, in which rows index compound loci, and columns index
gametes.

€ = (50176027 v 7£m71,176m71,2)
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where £;, = 1 if at least one arrival has occurred between j — 1,k and j, k (thus
&g = 1). We define a vector of distances d = (di,...,d,,) where d; is the distance
between 5 — 1 and j. The ancestry states A; at each locus on each gamete are
sampled using a hidden Markov model forward-backward algorithm as described
later. For each gamete, the jump indicators §; are then sampled conditional on
Aj, A]‘_l.

p(&ij) = Br(1 — exp —pd;)

The likelihood can then be written as
p(Aij =k | Aij-1,&ij,0,p) = da, k(1 — &ij) + &j0ir)
where d; is the distance from locus j — 1 to locus j.

If there is no regression model, the likelihood for parental admixture is then a
conjugate Dirichlet likelihood, with parameters calculated by adding the realized
counts of ancestry states on the gamete at loci where there has been at least one
arrival (¢ = 1) to the Dirichlet prior.

*** comment - if not already implemented, probably it’s quicker to sample the

total number A of arrivals in each interval directly, then set ¢ as an indicator variable
for A > 0.

If a regression model has been specified, the likelihood for parental admixture is
the product of the Dirichlet likelihood and the regression model likelihood for this
observation.

*** check how this is done, and where it is implemented

7.1. Sampling for population admixture parameters a (implemented
in class Latent)

The full conditional densities for the coordinates of the Dirichlet parameter vector
a are proportional to the product of the gamma prior density and the Dirichlet
likelihood.

n

r (ak + 0 al)
I'(o)

p(Oék ‘ a—kaeﬂael) 58

ai‘)_l exp {—ozk <€1 — Z log 9i> }p(@i |a,A;) =Dig | 0; o+ Z €ijAij
i=1

J=1
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We sample from this density using an adaptive rejection sampler for aj. This
requires the log density and its derivative

d
log f(ag) =nlogD | oy + Z ap | —nlogT'(ay)— < Zlogﬁ) (e0—1) log
I1=1,1%k
d d
Elogf(ak)—n‘l/ ozk—l—llzl:;ékal —nU(ay) — <€1 Zlog@)

This density is log-concave since

d
€ — 1
5 log f(ou) = n¥' | ap + g a | —n¥'(ag) — 0 5
1=1,1%k X

dQ
day,

and ¥, the trigamma function, is decreasing.

7.2. Sampling for global sum of intensities parameter p

In the current version of the program, the global sum of intensities parameter is
sampled conditional on the binary latent variables &, using an adaptive rejection

sampler.

Given the ¢’s the conditional distribution of p is

plpl...) =oc m(p) [T T](1 — exp{—pd;})% exp{—pd;(1 - &)}
i=1j=1
p) exp —pz —&j)d; ¢ [[(1 = exp{—pd;})%7  (2)
i,j

The log density is

log f(p) = =p | po+ 3 _(1=&;)d; +Z£ log(1 — exp{—pd;}) + (p1 — 1) log p

The first derivative of the log density is

d - g & djexpi—pdj}  (pr —1)
d_Ing( 0+Zl Si)d; +Z 1= oxp{-—pd,} | p

Where f,j = Zz f,‘j



The log density is log concave since

d* o ¢jdzexp{pd;}  (py —1)
dp?f( ) = Z (exp{pd;} — 1) p?

which is negative for all p > 0.

*#* Because this sampler conditions on ¢ (which is sampled conditional on the

realized locus ancestry states), it mixes slowly. Are we still doing this? Sampler
should be replaced by a Metropolis step that uses the likelihood calculated by the
HMM, conditioning only on the individual admixture parameters 6 and the observed
genotype data.

7.3. Sampling for gamete-specific sum of intensities parameter p
(implemented in class Individual)

To sample p for each gamete, we introduce another array of latent variables A to
represent the number of arrivals between each adjacent pair of linked loci. If the
two loci are d morgans apart then A ~ Pn(dp)

The update of p is then a standard conjugate update of a Poisson intensity
parameter with a gamma, prior, conditional on the sum of observed arrivals between
loci and the sum of the lengths of intervals between loci.

For L linked loci

L
plp|...) ocm(p) [T Y exp{=djp} ~ Ga | po+ D Nj.pr+ > d;
Jj=2 J J
We sample A conditional on ¢; if ¢ =1 XA > 1 and zero otherwise. Given ¢ we sample
d', the distance from the last arrival in the interval between loci j — 1, 7 to the locus
4. If the locus j has ancestry k then d’ is distributed exponentially in the region
(0, d) with parameter O;p (since given £ = 1 we know that there is at least one
arrival in the region between 0, d). Integrating constant K for distribution of d’ is

d
K= / PO exp{—zpby} dr =1 — exp{—dpb}
0

It follows that the cdf for d' is

1 — exp{—d'p}
F(d) =
@) = T (o)

Thus we can sample d’ from

@' =~ 11 = (1 - exp{—pfud)]
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It follows that
A—1~Pnlp(d—d)]

7.4. Incorporating reported ancestry

**%* is the code for this still in the model? if so, where?

We can model an individual’s reported ancestry proportions as two Dirichlet
distributions, one for each parent. Thus if the reported ancestry for individual 4
is expressed as 6§ ~ Diy(mr;) the full conditional distribution of paternal/maternal
admixture is

m
p(6; |a,m) =Dig | 0; | a+mi+ ) &A;—1
Pt

8. Hidden Markov model algorithms (implemented in class HMM)

The transition matrices for probabilities of ancestry at each locus, conditional
on the preceding locus, specify a Markov process on each gamete with stationary
distribution . We combine the two haploid transition matrices of order K, one
for each gamete, to a diploid transition matrix of order K?, for which the state
space is the ordered diploid ancestry states. For each pair of chromosomes in each
individual, we can specify a hidden Markov model

For each compound locus at which genotypes are observed, we have a vector A
that specifies for each possible ordered diploid ancestry state the probabilities of
the observed (unphased) multilocus genotype conditional on the realized haplotype
frequencies. To perform componentwise multiplication as a matrix operation, we
convert the vector A to a diagonal matrix

plg; [ Aj=1) ... 0
diag (A;) = : :
0 . plgj | A =k)
*** comment - is it computationally inefficient to use a diagonal matrix? Should
we just code the componentwise multiplication directly?

We use standard HMM algorithms to calculate the likelihood of the observed
genotype data at all loci on each chromosome in each individual, to sample the
hidden states (locus ancestry), and to calculate the marginal conditional distribution
of ancestry at each locus. The first step is to compute the forward and backward
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probability vectors at each locus.

8.1. Forward-backward algorithm

For each locus we can calculate a vector e and a vector 8 known as the for-
ward probabilites and backward probabilities. The forward probabilities are the
conditional probabilities a1, ..., a,,: the probabilities of each possible hidden state
(ancestry) at locus j given the observed data (genotypes) at loci 1,...,7. These
probabilities are given by

oM = gdiag (A1), forj=2,....m
all) = Oé(jfl)pji1 (Aj).
The backward probabilities are given by
M =1, forj=m-—1,...,1
BU) = Pj (Aj11) BU+1)

With K subpopulations, there are K? possible ordered diploid states of ancestry.
Thus a and B are vectors of length K2.

8.2. Marginal distribution of locus ancestry and likelihood
The marginal distribution of ancestry at each locus is sampled as

a(ljl)cﬁl(cj,i :p(Aj =k, G151 9m) OC;O(A]' =k|gi,---s9m)

3

The likelihood of the model parameters with the observed genotype data is calcu-
lated as

K
P91 gm) = S p(A; = kagise. . gm) = D0,
k=1

This expression for the likelihood can be calculated at any j.
*** comment - add a method to calculate the log-likelihood of each genotype at

each compound locus, as a check on genotyping errors.

8.3. Sampling locus ancestry

Posterior samples of locus ancestry are required to update individual admixture,
and to update the haplotype frequencies. Tests for linkage (association with locus
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ancestry) can be calculated more efficiently from the marginal distribution of locus
ancestry conditional on the model parameters, without sampling locus ancestry.

The locus ancestry Ai,... A, are sampled in sequence, starting at the right-
hand end of the chromosome and proceeding backwards. State A,, is sampled from
Ap ~ Mu(al™). Ancestry states A,,_1,...,A; are then sampled conditional on
the previously sampled states. Since the columns of P; represent the distribution
of ancestry at locus j given ancestry at locus j + 1 we sample A; ~ Mu(V') where
V is the component wise product of a¥) and the Aji1th column of Pj.

9. Sampling regression parameters (implemented in class
RegressionModel

To reduce posterior covariance between the regression parameters, the covariates
X5 should be standardized about their sample mean. Where covariates Xy are
not observed directly (as for individual admixture), their sample mean is estimated
during the burn-in period.

9.1. Linear regression

The model is specified as

y ~N(XB,2)

where y is the response, X are the independent variables (covariates and individ-
ual admixture proportions), B is the vector of regression parameters and X is the
precision.

With the reference prior m(8,)) = A~!, the marginal posterior distribution of

(B) is

p(8.8 ] 2) = St (ﬂ ‘ﬁn, XX (n - BB n - k) ~N (ﬁ ‘ﬂn, X' X0k~ 2)551)

where

B,=(X'X)""'X'y B,= %(y - XB,)'y

The marginal density of any subvector of a multivariate Student distribution St(z |
@, A, ) is Student, with mean vector and inverse of the precision matrix given by
the corresponding subvector of p and submatrix A.

*** comment - algorithm for logistic regression should be documented, preferably

in terms of a generalized linear model.
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10. Sampling haplotype pairs and haplotype frequencies (implemented
in classes Composite Locus and AlleleFrequencies)

Under a model with no dispersion, it is straightforward to sample the ordered
haplotype pairs once we have sampled the ordered states of locus ancestry on each
gamete.

The simplest way to sample ordered haplotype pairs at each locus in each indi-
vidual is to condition on the ancestry-specific haplotype frequencies, as well as the
observed genotypes, and the ordered state of locus ancestry.

Alternatively, we can integrate out the ancestry-specific haplotype frequencies
and update each individual’s haplotypes conditional on the Dirichlet prior 8 and
the realized haplotype counts in all other individuals.

The haplotype frequencies ¢ can then be sampled conditional on the prior and
the realized counts, as a conjugate Dirichlet distribution.

The full conditional for updating a pair z; of haplotypes in the ith individual,
conditional on the realized haplotype counts in all other individuals, is

Plzi=(g,h) | X i, Y] < (ng + By) (nh + Pn)

where n, and nj, are the realized counts of haplotypes g and h in all other indi-
viduals in the subpopulations of ancestry of paternal and maternal gametes at this
locus, B, and (3, are the corresponding elements of the Dirichlet parameter vectors,
and Xj; is the vector of realized haplotype pairs in all other individuals.

Niu T et al (AJHG, 2002) call this algorithm predictive updating.

% problem with this algorithm - sampling of individuals are not conditionally

independent given the population parameters. This won’t be easy to parallelize
- for parallel version, we maybe should use the simpler algorithm conditioning on
ancestry-specific haplotype frequencies instead.

*#*% check the code - is this really what we're doing?

*** to speed up computation for large haplotypes, we may have to use partition-
ligation (Niu 2002)

10.1. Sampling the Dirichlet parameters for ancestry-specific
haplotype frequencies under a dispersion model

Under a dispersion model, the Dirichlet parameters for ancestry-specific haplo-
type frequencies are not specified as constants but have a stochastic dependence
on the frequencies in a hypothetical ancestral population from which both modern
unadmixed descendants and the admixed population under study are derived.
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The Dirichlet parameter vector is reparameterized as a vector of proportions u
and sum of Dirichlet parameters 7.

The joint density for the ancestry-specific haplotype frequencies ¢ at a compound
locus with H haplotypes, conditional on u, 7 is given by the Dirichlet density

(@ | n,p) = I'(n) ¢ )”Z“hllﬁ g
’ P(n— > i) TTT () ™" =l

This is also the likelihood function for the dispersion parameter 7 and the Dirich-
let parameters p, given realized haplotype frequencies ¢.

The problem is to sample the Dirichlet proportion vector u, conditional on the
realized haplotype counts. If y is univariate (in other words, if the locus is diallelic)
we can sample y directly from the product of two beta-binomial likelihoods

2

p( | mymi,rt) o O ;)F(M))z [Ir (n—p+ni—r@)T (u+r)
i=1

where 7 = 1 for unadmixed modern descendants and 7 = 2 for the admixed popu-
lation and n; and (9 are the realized haplotype counts in the sampled individuals.

r1 of ny gametes in

For multivariate pu we have to use a Metropolis update. We propose p’ from

ol
1T Ty <%>uh

h=1 L

2 H
p(p|r) = 2HHF(nuh+7’h)

Hh 1 T(nun) i=1h=1

q(p')

% comment - maybe a better proposal density would be to draw elements up,

in sequence, at each step subtracting the realized count for haplotype h from the
total haplotype count, and subtracting the drawn element uj from the sum 7.

n is sampled by a random walk. To maximize step size we propose ', u', where

’
= % Thus a new 7' is only a change in dispersion.

py—1
(0 1.1 9) ox < exp { = (logn = )7 } T }zmHH(¢l’¢j)

j=1l=1
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*** comment - check this please.

We can then sample the haplotype frequencies ¢ conditional on the Dirichlet
parameters pu,7n and the realized haplotype counts.

11. Construction of score tests based on the missing-data likelihood

We write U(6;Y) for the observed-data score Llogf(Y | 0), and I(9;Y) for the
observed information —%logf(Y | 6).

The complete-data log-likelihood can be partitioned into the observed data log-
likelihood and the missing-data log-likelihood (Dempster, Laird and Rubin 1977).

log f(V, X [ 0) =Tlog f(Y | 0) +log f(X | Y, 0) (3)

Differentiating with respect to 8 and taking expectations over the posterior dis-
tribution of the missing data X yields

d
Exve %108; fY, X |0)| =U(6;Y)

as Ex|y [% log f(X | Y)], the expectation of a score over the probability of the
data, is zero. We can thus evaluate the score U(0;Y") as the posterior expectation
of the complete-data score d% log f(Y,X | 9)

Differentiatng again, and taking expectations over the posterior distribution leads
to the result

d? d
—Exve Wlog fY, X [0)| =1(0;Y) + Varyy,g @108; fY,X]Y,0)

This result can be interpreted as
Complete information = observed information + missing information
The algorithm for the score test, applied to a Bayesian full probability model in
which the parameter 6 is fixed at its null value 6y, with samples from the posterior
distribution of the missing data X given the observed data Y generated by MCMC
simulation, is as follows:-

1. At each realization of the complete data, compute the realized score vector
and information matrix based on the complete-data likelihood at 6y, and ac-
cumulate the results to evaluate:-

e the score U as the posterior mean of the realized score.
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e the complete information as the posterior mean of the realized informa-
tion

e the missing information as the posterior variance of the realized score.

2. At the end of the run, calculate the observed information V' as the complete
information minus the missing information

3. Calculate the score test statistic as UV ~1/2 for scalar U, or U'V U where U
is a vector.

11.1. Rao-Blackwellization

In tests for the effect of locus ancestry, the computational efficiency is improved
by using a Rao-Blackwellized estimator of the score as described below. Suppose
that we are sampling the posterior distribution of an unobserved variable X, which
has a likelihood in the exponential family for the parameter of interest 8. For an
exponential likelihood, the score for a single observation z; has the form observed
minus expected, weighted by a function a; of a dispersion parameter ¢.

Ti — Hi

ai(¢)

If we can compute the marginal distribution of z; at each iteration, conditional
on the model parameter pu and observed data Y, we can can evaluate the posterior

o (g )|

EX\Y,u (z) — M}
ai(})

expectation of the score as

U®;Y)=E,xy

= Pulxy

The missing information is then the sum of two components: the posterior vari-
ance of the conditional expectation of the complete-data score, and the posterior
expectation of the conditional variance of the complete-data score.

VaYX\Y,a [U(0;Y, X)] = Varu‘y (EX\M,Y [U(6;Y, X)]) + EY\X [VarX\Y,u (U(0;Y, X))]

E Ti) — Var Ti) —
B G R e
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The first term measures the information that is missing because of uncertainty
about the model parameter u, and the second term measures the information that
is missing because of uncertainty about the latent variable X.

11.2. Score covariance with other model parameters

We test each locus for association of a latent variable X; at the locus with the
outcome Y under study, while adjusting for covariates X5, including genetic back-
ground, in a generalized linear model of the form g (E [Y]) = [X1, X3]'[81, B2], where
g() is a link function. As X is not observed directly, we sample from its posterior
distribution given the observed genotype data. For a likelihood in the exponen-
tial family with canonical link function, the score vector for the ith observation at
B1 = 0 has the form

U(/Bla Ya X)

vy ) = [ U(62:Y. X)

_bi [ Xi1 (?Ji —971[771‘]) ]

¢ | xi2 (vi — 97 i)

where where ¢ is the dispersion parameter, p; is a known prior weight, and

i = ngﬁQ-

The information matrix has the form

V(B3;Y,X) = [ Vi Vi ] _bi [ X{1Xi1  XjXi2 ] d

-1
Vis Vo ¢ | XigXi1 XigXi2 d_mg i
If there is covariance between U (1) and U (33), the posterior variance of U (f1;Y, X)

will include a component attributable to uncertainty in the model parameters Ss.
This is undesirable for two reasons. First, it increases the computational workload,
as longer runs are required to evaluate the difference between the complete and
missing information. Second, it complicates the interpretation of the proportion of
information extracted as a measure of the efficiency of the design, in relation to an
ideal experiment in which the variables Y and X are observed directly.

To eliminate this covariance, we can standardize the complete-data score and in-
formation algebraically. Over the probability distribution of Y in hypothetical repe-
titions of the experiment, the asymptotic distribution of the score vector U (51, Y, X)
given U (f2; Y, X) is multivariate normal with mean V5V, 'U(f2; Y, X) and variance
Vi1 — ViaViy ' Vai

For each realization of the complete data, we calculate the covariance matrix V' by
summing over all observations, and use this to calculate the conditional expectation

By x6,,6, [UB1 Y, X) [ U(Bo;Y, X)]
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and its conditional variance over the probability distribution of Y.

The score can now be calculated as
EX,ﬁﬂY;ﬂl [U (B1;Y. X) — EY\X=517ﬁ2 (UB1:Y, X) | U[Ba: Y, X])]

= EX=/32\Y=,31 (U (B1;Y, X)] — EX=/32\Y751 [EY\X:51=ﬂ2 (UB1;Y, X) | U [Ba: Y, X])]

The second term on the right is zero as it is the expectation of a score over the
probability distribution of the data.

= Ex g,|v,, [U(B1;Y, X)] = U(B1;Y)

The complete information is evaluated as the posterior expectation over X of
Vit — V12V251V21, and the missing information is evaluated as the posterior variance
of

U(B1:Y, X) — Ey|xp,6 [UBLY.X) [U(B2Y, X)]

This algorithm can be extended to exploit the Rao-Blackwellization described
above, if we are able to evaluate the marginal conditional expectation and variance
of the latent variable z;;, given a model parameter y and the observed data Y.

*** this Rao-Blackwellization is not yet implemented for regression score tests,
but should be soon

To calculate the posterior expectation of the complete-data score U;, we replace
z;1 in the complete-data score and a:zzl in the complete-data information matrix by
their posterior expectations. The missing information, standardized for Us, is

Varxy,s, (Ui = By|xp, (U1 | U2)]

which can be partitioned into two components
= Var, sy (Bxjuy [Ur = Byix,, (U1 | U2)]) +Bugy)y [Varsyvs, (U1 = By x, U1 | U2])]

= Var#ﬁQ‘y (EX\;L,Y [Ul — EY\XﬁQ (U1 | Ug)]) + EY\XﬁQ [Varx‘y’[b (Ul)]

as the variance of Ey|x g, [U1 | Uz] over the distribution of X given Y, u, Bo is
zZero.

= Var, 5,y (Exuy [U1 = By (x5, (U1 | U2)])+Eu g,y [Varxjys, (xi1) (vi — 9 '[nil)]

Again, these two terms can be interpreted in terms of the sources of uncertainty
that contribute to the missing information.
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12. Score tests for linkage with locus ancestry
12.1. Affecteds-only score test for linkage

We define A; as the number of gene copies at the locus under study that have
ancestry from the high-risk population. 6;; and 6;5 are the paternal and maternal
admixture proportions.

The parameter under test is the ancestry risk ratio . The likelihood function is
a trinomial (sum of two bernoulli variates).

The score U with respect to logr at logr = 0 is given by

n

1
U=3 Z(Ai — 0i1 — 0i2)
=1
The information [ is given by
1 n
I = Z Z_Zl [911 (1 — 921) + 92'2 (1 — 922))]

*** code in program may compute score and info for each gamete separately, then

compute info for 1 individual by adding variances corrected for covariance. Simpler
to calculate it as above.

Rao-Blackwellised estimate of E(U) can be obtained by replacing A; by its con-
ditional expectation, obtained from the HMM marginal conditional distribution.
Conditional variance of U is obtained similarly from this marginal distribution.

12.2. Regression-based score tests (implemented in class ScoreTests)

These score tests test loci one at a time for association of a latent variable X
(ancestry or haplotype count) at the locus with the outcome Y under study, while
adjusting for covariates X5, including genetic background, in a generalized linear
model of the form g (E [Y]) = [X1, X2]'[B1, B2], where g() is a link function.

The score and information are computed from the expressions given earlier for a

generalized linear model with canonical link function.

12.3. Regression-based score test for linkage with binary outcome
(implemented in class ScoreTests)

For a binary outcome, the link function is logistic, the dispersion parameter is 1,
and the derivative of the inverse link function is
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f(1— f) where f is the expected value of Y given X, calculated by applying the
the inverse link function to X'p.

12.4. Score test for linkage with quantitative trait (linear regression
model)

For a quantitative trait, the link function is the identity function, the dispersion
parameter is the precision, and the derivative of the inverse link function is 1.

13. Score tests for association with alleles or haplotypes

13.1. Score tests for allelic association conditional on locus ancestry
(not yet implemented)

For a locus with H haplotypes with ancestry specific haplotype frequencies ¢ =
(¢1,...,¢s—1), the likelihood of observing r = (rq,...,7y) where r;, is the realized
count of haplotype h. The complete-data likelihood is;

s—1
L= (=3 " [ &
k=1

s—1
log L = rilog(1—Y )+ Y rilogdy
k=1

d T Tn
log L =
dg; ° ¢ (1— 2 én)
2 r; T
P - A SPE
" toel I'n
dpid; st = (1= én)?

14. Computing the log-likelihood function (not yet implemented)

The p-value computed from the score test is useful when screening many null
hypotheses to decide which ones to investigate further. For quantitative inference,
we require the log-likelihood for the scalar parameter . For admixture mapping,
inference is based on ancestry X at the locus under study, and the probability of the
observed genotype data Y at all loci, given X and model parameters which include
allele frequencies and parental admixture, does not depend upon the parameter
under test (the ancestry risk ratio 8). Although P (Y | X, \,0) is an integral over
states at other loci X* of the form Y P (Y, X* | X, \,0), the model specifies that
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the outcome is dependent only upon ancestry at the locus under test and p, so that
P(Y,X* | X, ), 60) does not depend on 6. It follows that

P(Y‘X,)\,Q) :P(Y‘XaAaGU)

Similarly, in a genetic association study of the effect of unobserved haplotypes,
the probability of the unphased genotype data given the pair of haplotypes does
not depend upon the parameter under test (the effect of the haplotype upon the
outcome. In this situation it is possible to compute the log-likelihood function di-
rectly as a function of 6, if we can evaluate the marginal conditional distribution
P (X |Y, )\ 00).

Thompson and Guo (1991) show that the marginal log-likelihood ratio can be eval-
uated as the expectation of the complete-data log-likelihood ratio over the posterior
distribution of the missing data under the null hypothesis.

Loy - P10 [P(Y,XH)]

P(Y 6) X% [Py, X 6)

We can rewrite this expectation in Rao-Blackwellized form as the expectation of
a conditional expectation

P(X|N6O)P(Y X0
L(6;Y) = Ey\y,g, <EXY,/\,€0[ X120 P(¥] ) D

P (X | \0o) P (Y | X, 600)

IfP(Y | X,\0)=P(Y|X,\60)

L(6;Y) = Exy,, (EXY,M’O [MD

P(X [ X 60)

For discrete X with finite range of values, the inner expectation can be evaluated
exactly, giving

L(8:Y) = By, (Z PP, A,90)>
X bl

To evaluate the log-likelihood function, we can compute the log of this likelihood
ratio at multiple values of 6 in a single run of the MCMC sampler.

Examples of this algorithm: Patterson 2004, Holmans 2002 (ascribed to Rice)

15. Model choice and model diagnostics

To choose between alternative models, we should compute the marginal likelihood
of the model (evidence). This is currently implemented only for analyses of a single
individual.
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We also provide model diagnostics, based on score tests or on the posterior pre-
dictive check probability, to allow the user to identify specific ways in which the
model fits the data poorly.

15.1. Computation of marginal likelihood, implemented in class Chib

Chib (1995) suggests calculating the marginal likelihood p(y) as

log p(y) = logp(y | ) + log p(m*) — log p(7™ | y)

This follows from Bayes theorem and holds for any w*. Typically, it is straight-
forward to evaluate p(y | *) and log p(7*), thus we just need an estimate of the
posterior ordinate p(7* | y). This is most efficiently estimated if 7v* is at or near
its posterior mode.

If we specify a non-hierarchical model (independent priors on the admixture pro-
portions of each individual, and a global sum of intensities parameter), the model
parameters 7 are 0, ¢ and p: respectively individual admixture, ancestry-specific
allele frequencies and sum of intensities.

The posterior density of w can be written as

plr | ) = / p(r |y, 2)p(z | y)de

Conditional on the latent variables z - ancestry states at each locus and the
number of arrivals in each interval between loci - the full conditional density of =
is the product of full conditional densities of 8, ¢ and p, which are conjugate and
can be evaluated directly at each realization of z.

We can thus evaluate the posterior ordinate p(7* | y) with the following Monte
Carlo estimate.

M

1 .
N — * (4)
p(m* [ y) M;1p(7T |y, 2").

The posterior modes of 8, ¢ and p are estimated during the burn-in period.

In the current version of the program, this method is implemented only for data
on a single individual.

*** for given allele frequencies, a more efficient algorithm would be to calculate
the likelihood at 7v* using the HMM, without conditioning on locus ancestry states.
Then use Metropolis proposal steps to estimate the posterior ordinate. With a prior
on allele frequencies, this would be more complicated.



~923 _

*** can this be extended to a hierarchical model for admixture and sum inten-

sities? We would have to group the parameters into blocks (one block for each
individual, one block for each population-level parameter).

*#*% should test other algorithms for calculation of evidence: annealing, or nested

sampling

15.2. Score test for mis-specification of ancestry-specific allele
frequencies at a diallelic locus

With £ populations, the probabilities of observing 0, 1 or 2 copies of allele 1,
conditional on parental admixture, are given by;

k k
PX=0) = 10 =33 g0
i
k k N k k .
PX=1) = ) :ZZQiijZ( )9; )-*—ZZpiqj@Z( )9](- )
i i

k k
P(X=2) = 1O =33 ppio Ve,
(2

where p; is the frequency of allele 1 in population ¢ and ¢; = 1 — p;.

The score is obtained by differentiating the logarithms of these expressions with
respect top;, 1 =1,...,k.

k
1
v = o | ~2adi — > aji($ij + i)
i
vl = (Ul(l), ,Uzgl))
1 1 k
U = 200 - pa) i+ (05— pi) (i + b50)
M
j#i
2 2
Uv® = (Ul( o ,g))
2 1 :
v® = a7 | 2P + > pi(di + bi0)

JFi
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2 ..
19 = (Ui(0)> _%
v = Ui<0)U](0)_(¢iaﬁJ(rU)¢ji)
1 = () 4 o
Iz‘(jl) _ Ui(1)U](1)+2(¢z'1jI:)¢ji)
@ = (Ui(2)>2—12_;(b;§
1? = Ui(2)U](2)_(</>mﬁJ(r2;bji)

With this test conditional on gamete admixture, we are inferring mis-specified
allele frequencies by comparing the observed and expected allele counts given each
individual’s admixture proportions. The scores for misspecification of allele frequen-
cies in different subpopulations at the same locus are correlated with each other.

By conditioning on locus ancestry we can derive tests for mis-specified allele
frequencies that are independent across subpopulations.

*** 1s this now implemented in the code?

15.3. Posterior predictive check test for residual population
stratification

*** the current version of the program uses for this test all loci that are at least
x ¢M apart (what is x?). This is not a pure test for stratification

4% the code for this test should be fixed to use only unlinked loci

* we might have a more efficient test if we use a weighted sum of allele scores at
all loci on each chromosome, obtained as the first principal component.

This test exploits the argument that if all population stratification has been
accounted for, there should be no residual allelic association between unlinked loci.
We construct test statistics and calculate them for the observed and replicate data
sets.

We choose a single simple locus from each chromosome, dichotomize the alleles
into two bins at any locus where there are more than two alleles, and compute for
each individual the observed minus expected count of allele 1, where the expected
count is a weighted average of the ancestry-specific allele frequencies with weights
given by the admixture proportions of the two gametes. We then compute the
covariance matrix between these observed minus expected counts. In other words,
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these are partial covariances.

The matrix of covariances between counts of allele 1 at these unlinked loci is
calculated as matrix A = {a;;} where

aij = Y [Xir — B(Xik | 06)][ X5 — B(X;5 | 64)]
p

At each realization of the sampled alleles and allele frequencies, we compute
the first eigenvalue of this matrix, divided by the trace (sum of eigenvalues). If
this proportion is higher than expected by chance, it indicates that there is an
underlying factor giving rise to allelic associations between unlinked loci. This ratio
T is computed as Ty, for the observed alleles and as T;., for a replicate dataset
with alleles sampled conditional on the ancestry-specific frequencies and gamete
admixture proportions. The posterior predictive check probability is the posterior
frequency with which T}, > Tops.

15.4. Posterior predictive check test for dispersion between prior and
observed allele frequencies

n;i - number of individuals with ancestry £ at marker j
7k - vector of counts of observed alleles at marker j with ancestry k
¢ji, - allele frequency at marker j in population &

Generate
ik ~ Mu(gjr, njk)

Compare Ty (likelihood of 7j;) and Ty (likelihood of r;k)

This test statistic is computed for each locus in each subpopulation, and as a
summary test over all loci in each subpopulation.



