
ADMIXMAP statistial methodsClive J. HoggartPaul M. MKeigueConway Institute, University College Dublin, Bel�eld, Dublin 4, Ireland. Tel:+353 1 716 6952paul.mkeigue�ud.ie1. IntrodutionThese notes briey desribe the statistial model and the algorithms used inADMIXMAP. It is intended for users requiring more detail of the model than isgiven in the manual and in our published papers, and for developers working on thesoure ode. For doumentation on how to use the program, see the user manual.Note: This doument is a rough draft and may not aurately represent theurrent program. Last Updated 28 Jan 2005.2. Model for genotypes and haplotypes at a ompound lous(implemented in lass CompositeLous)At a simple lous, there are S possible alleles, numbered from 1 to S. We observeunphased genotypes at some of these loi. Eah possible unphased genotype anbe represented as a pair of unsigned integers. If the two integers in this pair aredi�erent, the individual is heterozygous. Where the genotype is missing, both allelesare missing. Missing alleles an be represented as 0.A ompound lous is a sequene of one or more adjaent simple loi that areseparated by zero map distane.A haplotype is a sequene of alleles at the L simple loi within a ompound lous.The alleles that speify eah possible haplotype an thus be represented by a vetorof unsigned integers.The number H of possible haplotypes at a ompound lous with s1; : : : ; sL allelesat the L simple loi is H = s1s2 : : : sL. Thus eah possible haplotype an berepresented by an unsigned integer between 1 and H.For eah individual at eah ompound lous, there is a pair of haplotypes whihan be represented by a pair of unsigned integers between 1 and H. If the genotype



{ 2 {at any simple loi are missing, or there is more than one lous in the ompoundlous and the individual is heterozygous at more than one of these simple loi, theobserved genotype data do not uniquely assign a pair of haplotypes.For a single individual at a ompound lous, there are K possible anestry stateson the paternal and maternal gametes: thus K2 possible ordered anestry statesrepresented as a pair of unsigned integers between 1 and K.The lass CompositeLous should have the following methods1. to return all possible ordered haplotype pairs (as pairs of integers) given theobserved genotypes (some of whih may be missing) at the L simple loi withinthe ompound lous. This method should be alled only one for eah lousand eah individual, and the results should be stored by the Individual objet.2. to alulate the likelihood of eah possible ordered state of lous anestry,given the observed genotype data and the anestry-spei� haplotype fre-quenies.3. to sample an ordered haplotype pair from the list of possible haplotype pairs,given the ordered states of lous anestry and the anestry-spei� haplotypefrequenies.4. to return the sampled haplotype pair, given the ordered states of lous an-estry, as an array of dimension H � K giving the realized ounts of eahhaplotype in eah subpopulation.5. to return the vetor of alleles that speify the haplotype, given a haplotypeoded as an unsigned integer between 1 and H.*** omment - it's probably possible to speed up omputation by writing speialalgorithms for the simplest situation where the ompound lous onsists of onedialleli simple lous, and thus eah haplotype onsists of a single allele that an bestored as a bit.We observe unphased multilous genotypes y11; : : : ; y1L; : : : ; yN1; : : : ; yNJ on Nunrelated individuals i = 1; : : : ; N typed at j = 1; : : : ; J ompound loi,At the jth ompound lous, there areH possible haplotypes. The realized haplotypepair in the ith individual is xij1, xij2. We have K anestral populations. Theanestry at lous j of individual j on the gth gamete is denoted by Aijg. Thepaternal and maternal admixture proportions of individual i are denoted by vetors�i1 and �i2 respetively.The anestry-spei� haplotype frequeny is de�ned as the probability of haplo-type h on gth gamete of ith individual at dialleli lous j, given anestry from kthpopulation p(Xijg = h j Aijg = k; �jk:) = �jkh



{ 3 {The probability of the observed multilous genotype, given the anestry of thepaternal and maternal gametes at that lous, is the sum of the probabilities of allordered haplotype pairs that are ompatible with the observed genotype.For eah ompound lous, we alulate a vetor � that spei�es for eah pos-sible ordered diploid anestry state the probabilities of the observed (unphased)multilous genotype onditional on the realized haplotype frequenies�j = 0B� p(gj j Aj = 1)...p(gj j Aj = K) 1CA*** omment - these vetors need only be omputed one, for all observed mul-tilous genotypes, when the haplotype frequenies are updated. Should �x thismethod in lass CompositeLous3. Model for lous anestry, individual admixture and populationadmixtureVariation of anestry along hromosomes of a single gamete is modelled as thesum of K independent Poisson arrival proesses, with a parameter � for the sum ofthe intensities of these arrival proesses. For loi j � 1; j separated by distane djp(Aij = k j Ai;j�1;�; �) = ÆAi;j�1k exp��dj + (1� exp��dij)�ikThis in turn spei�es the variation of anestry along hromosomes as a Markovproess, for whih the transition matries between two loi separated by a genetimap distane d morgans an be derived.Thus for a three-state arrival proess with intensities �, � and  of states 1, 2and 3 respetively, the instantaneous transition matrix (generator matrix) is givenby G = 0B� �� �  � � ���  � � ��� � 1CAFrom this the matrix of haploid transition probabilities (on a single gamete anbe derived asP (x) = 1� 0B� �+ (� + ) expf��dg � � � expf��dg  �  expf��dg�� � expf��dg � + (�+ ) expf��dg  �  expf��dg�� � expf��dg � � � expf��dg  + (� + �) expf��dg 1CA



{ 4 {where � = �+ � +  and d is the map distane between the two loi of interest.The transition matrix is thus spei�ed by the sum of intensities parameter �, thegeneti map distane x, and the gamete admixture proportions �1; �2; �3.P = 0B� f + (1� f)�1 (1� f)�2 (1� f)�3(1� f)�1 f + (1� f)�2 (1� f)�3(1� f)�1 (1� f)�2 f + (1� f)�3 1CAwhere �1 = ��+�+ and f = expf�(�+ � + )xg.In the transition matrix, the olumns index the population at lous j+1 and therows index the population at lous j.From the haploid transition matries of order K we an alulate the transitionmatrix for ordered diploid states, of order K2.4. Generalising the model for population admixture (not yetimplemented)We should allow for models in whih the distribution of admixture in the popula-tion is not unimodal, or where the population inludes both admixed and unadmixedindividuals. We ould ahieve this using a mixture of Dirihlet distributions.Priors p(� j �;�) / Xl �lDi(�l)p(�) = Di(�)Full onditional p(� j �;�) =Xl ÆlDi(�l)where Æl = �l n!(Pl �l)n Yl �Pj Ajll�Pj Ajl�! (1)Equation 1 is the multinomial-Dirihlet likelihood for the realized ount of anes-try state arrivals A, onditional on the prior. These weights are the same as thoseused in the Dirihlet proess.



{ 5 {4.1. Priors on population admixture and sum of intensities parametersIf the option globalrho=1 is spei�ed, the sum of Poisson intensities parameter �is assigned the prior p(�) = Ga(� j �0; �1)Default values are 5 for the the shape parameter �0 and 1 for the loation pa-rameter �1.Alternatively, if the option globalrho=0 is spei�ed, a hierarhial model is spei�edwith a sum of intensities parameter � for eah gamete.Parental admixture proportions �i are distributed in the population as Di(�i j �).The hyperparameters � of this Dirihlet distribution are spei�ed with independentgamma prior distributions, with parameters �0; �1.p(�k j �k) = Ga(�k j �0; �1); k = 1; : : : ;KThe admixture proportions of the two parental gametes an be drawn indepen-dently from the Dirihlet distribution (option randommatingmodel=1) or spei�edto be the same.5. Model for haplotype frequenies (implemented in lassAlleleFrequenies)If the option priorallelefreq�le is spei�ed, at eah lous the anestry-spei�haplotype frequeny vetor �jk: has a Dirihlet prior distribution Di (�1; : : : ; �H).The vetor (�1; : : : ; �H) an be spei�ed by the user. The haplotype frequenies�jk: are updated as a onjugate Dirihlet update, using the realized vetor of ountsof eah haplotype on gametes that have anestry from subpopulation k at lous j.If no prior on haplotype frequenies are supplied, the haplotype frequenies aregiven an uninformative prior.If option �xedallelefreq is spei�ed, the haplotype frequenies are �xed.5.1. Hierarhial (dispersion) model for anestry-spei� allelefrequeniesFor a given lous lous and subpopulation, we speify�(1) - anestry-spei� haplotype frequenies within the admixed population�(2) - haplotype frequenies in modern unadmixed desendants



{ 6 {If the lous has H haplotypes, we assume the �'s are distributed as�(i) � Di(�1; : : : ; �n�1; �); i = 1; 2;This spei�es that �(1) and �(1) are draws from a Dirihlet prior, with parametervetor of length H, the elements of whih sum to �. The dispersion parameter� indexes the dispersion of allele (haplotype) frequenies between modern unad-mixed desendants and the orresponding anestry-spei� allele frequenies in theadmixed population.The priors for � and � are spei�ed as� � Ga( ; �)�i� � Be(1; 1)with the onstraints that�i � 0:5; � � 0:5 +X�i:*** hek - are we really using these priors? ?The prior distributions for �l and � were hosen to be uninformative but to givelittle prior weight at extreme values (0 or 1 for �i, 0 or large values for �). Thishelps to make the omputation robust.6. Regression model for dependene of outome variable on individualadmixture and ovariates spei�ed by the user (implemented inlass Regression)The urrent version of the program allows the user to speify either a linearregression model for a quantitative trait, or a least-squares regression model for abinary trait.7. Sampling for parental admixture (implemented in lass Individual)To sample individual admixture, we introdue for eah individual an array ofbinary latent variables �, in whih rows index ompound loi, and olumns indexgametes.� = (�01; �02; : : : ; �m�1;1; �m�1;2)



{ 7 {where �jg = 1 if at least one arrival has ourred between j � 1; k and j; k (thus�1g = 1). We de�ne a vetor of distanes d = (d1; : : : ; dm) where dj is the distanebetween j � 1 and j. The anestry states Aj at eah lous on eah gamete aresampled using a hidden Markov model forward-bakward algorithm as desribedlater. For eah gamete, the jump indiators �j are then sampled onditional onAj ; Aj�1. p(�ij) = Br(1� exp��dj)The likelihood an then be written asp(Aij = k j Ai;j�1; �ij ;�; �) = ÆAi;j�1k(1� �ij) + �ij�ik)where dj is the distane from lous j � 1 to lous j.If there is no regression model, the likelihood for parental admixture is then aonjugate Dirihlet likelihood, with parameters alulated by adding the realizedounts of anestry states on the gamete at loi where there has been at least onearrival (� = 1) to the Dirihlet prior.*** omment - if not already implemented, probably it's quiker to sample thetotal number � of arrivals in eah interval diretly, then set � as an indiator variablefor � > 0.If a regression model has been spei�ed, the likelihood for parental admixture isthe produt of the Dirihlet likelihood and the regression model likelihood for thisobservation.*** hek how this is done, and where it is implemented7.1. Sampling for population admixture parameters � (implementedin lass Latent)The full onditional densities for the oordinates of the Dirihlet parameter vetor� are proportional to the produt of the gamma prior density and the Dirihletlikelihood. p(�k j ��k; �0; �1) / 0����k +Pdl=1;l 6=k �l��(�k) 1An
��0�1k exp(��k �1 � nXi=1 log �i!) p(�i j �;Ai) = DiK0��i �������+ mXj=1 �ijAij1A



{ 8 {We sample from this density using an adaptive rejetion sampler for �k. Thisrequires the log density and its derivativelog f(�k) = n log �0��k + dXl=1;l 6=k�l1A�n log �(�k)��k �1 � nXi=1 log �i! :::+(�0�1) log�kdd�k log f(�k) = n	0��k + dXl=1;l 6=k�l1A� n	(�k)� �1 � nXi=1 log �i!+ �0 � 1�kThis density is log-onave sined2d�k2 log f(�k) = n	00��k + dXl=1;l 6=k�l1A� n	0(�k)� �0 � 1�2kand 	0, the trigamma funtion, is dereasing.7.2. Sampling for global sum of intensities parameter �In the urrent version of the program, the global sum of intensities parameter issampled onditional on the binary latent variables �, using an adaptive rejetionsampler.Given the �'s the onditional distribution of � isp(� j : : : ) =/ �(�) nYi=1 mYj=1(1� expf��djg)�ij expf��dj(1� �ij)g= �(�) exp8<:��Xi;j (1� �ij)dj9=;Yi;j (1� expf��djg)�ij (2)The log density islog f(�) = ��0��0 +Xi;j (1� �ij)dj1A+Xj �:j log(1� expf��djg) + (�1 � 1) log �The �rst derivative of the log density isdd� log f(�) = �0��0 +Xi;j (1� �ij)dj1A+Xj �:jdj expf��djg1� expf��djg + (�1 � 1)�where �:j =Pi �ij



{ 9 {The log density is log onave sined2d�2 f(�) = �Xj �:jd2j expf�djg(expf�djg � 1)2 � (�1 � 1)�2whih is negative for all � � 0.*** Beause this sampler onditions on � (whih is sampled onditional on therealized lous anestry states), it mixes slowly. Are we still doing this? Samplershould be replaed by a Metropolis step that uses the likelihood alulated by theHMM, onditioning only on the individual admixture parameters � and the observedgenotype data.7.3. Sampling for gamete-spei� sum of intensities parameter �(implemented in lass Individual)To sample � for eah gamete, we introdue another array of latent variables � torepresent the number of arrivals between eah adjaent pair of linked loi. If thetwo loi are d morgans apart then � � Pn(d�)The update of � is then a standard onjugate update of a Poisson intensityparameter with a gamma prior, onditional on the sum of observed arrivals betweenloi and the sum of the lengths of intervals between loi.For L linked loip(� j : : : ) / �(�) LYj=2 ��j expf�dj�g � Ga0��0 +Xj �j; �1 +Xj dj1AWe sample � onditional on �; if � = 1 � � 1 and zero otherwise. Given � we sampled0, the distane from the last arrival in the interval between loi j�1; j to the lousj. If the lous j has anestry k then d0 is distributed exponentially in the region(0; d) with parameter �k� (sine given � = 1 we know that there is at least onearrival in the region between 0, d). Integrating onstant K for distribution of d0 isK�1 = Z d0 ��k expf�x��kg dx = 1� expf�d��kgIt follows that the df for d0 isF (d0) = 1� expf�d0�g1� expf�d��kgThus we an sample d0 fromd0 = �1� [1� u(1� expf���kdg℄



{ 10 {It follows that �� 1 � Pn ��(d� d0)�7.4. Inorporating reported anestry*** is the ode for this still in the model? if so, where?We an model an individual's reported anestry proportions as two Dirihletdistributions, one for eah parent. Thus if the reported anestry for individual iis expressed as � � Did(�i) the full onditional distribution of paternal/maternaladmixture is p(�i j �;�i) = Did0��i ������ �+ �i + mXj=1 �ijAij � 11A :8. Hidden Markov model algorithms (implemented in lass HMM)The transition matries for probabilities of anestry at eah lous, onditionalon the preeding lous, speify a Markov proess on eah gamete with stationarydistribution �. We ombine the two haploid transition matries of order K, onefor eah gamete, to a diploid transition matrix of order K2, for whih the statespae is the ordered diploid anestry states. For eah pair of hromosomes in eahindividual, we an speify a hidden Markov modelFor eah ompound lous at whih genotypes are observed, we have a vetor �that spei�es for eah possible ordered diploid anestry state the probabilities ofthe observed (unphased) multilous genotype onditional on the realized haplotypefrequenies. To perform omponentwise multipliation as a matrix operation, weonvert the vetor � to a diagonal matrixdiag (�j) = 0B� p(gj j Aj = 1) : : : 0... . . . ...0 : : : p(gj j Aj = k) 1CA*** omment - is it omputationally ineÆient to use a diagonal matrix? Shouldwe just ode the omponentwise multipliation diretly?We use standard HMM algorithms to alulate the likelihood of the observedgenotype data at all loi on eah hromosome in eah individual, to sample thehidden states (lous anestry), and to alulate the marginal onditional distributionof anestry at eah lous. The �rst step is to ompute the forward and bakward



{ 11 {probability vetors at eah lous.8.1. Forward-bakward algorithmFor eah lous we an alulate a vetor � and a vetor � known as the for-ward probabilites and bakward probabilities. The forward probabilities are theonditional probabilities �1; : : : ; �m: the probabilities of eah possible hidden state(anestry) at lous j given the observed data (genotypes) at loi 1; : : : ; j. Theseprobabilities are given by�(1) = �diag (�1) ; for j = 2; : : : ;m�(j) = �(j�1)Pj�1 (�j) :The bakward probabilities are given by�(m) = 1; for j = m� 1; : : : ; 1�(j) = Pj (�j+1)�(j+1)With K subpopulations, there are K2 possible ordered diploid states of anestry.Thus � and � are vetors of length K2.8.2. Marginal distribution of lous anestry and likelihoodThe marginal distribution of anestry at eah lous is sampled as�(j)1;k�(j)k;1 = p(Aj = k; g1; : : : ; gm) / p(Aj = k j g1; : : : ; gm)The likelihood of the model parameters with the observed genotype data is alu-lated as p(g1; : : : ; gm) = KXk=1 p(Aj = k; g1; : : : ; gm) = �(j)�(j):This expression for the likelihood an be alulated at any j.*** omment - add a method to alulate the log-likelihood of eah genotype ateah ompound lous, as a hek on genotyping errors.8.3. Sampling lous anestryPosterior samples of lous anestry are required to update individual admixture,and to update the haplotype frequenies. Tests for linkage (assoiation with lous



{ 12 {anestry) an be alulated more eÆiently from the marginal distribution of lousanestry onditional on the model parameters, without sampling lous anestry.The lous anestry A1; : : : Am are sampled in sequene, starting at the right-hand end of the hromosome and proeeding bakwards. State Am is sampled fromAm � Mu(�(m)). Anestry states Am�1; : : : ; A1 are then sampled onditional onthe previously sampled states. Sine the olumns of Pj represent the distributionof anestry at lous j given anestry at lous j + 1 we sample Aj � Mu(V ) whereV is the omponent wise produt of �(j) and the Aj+1th olumn of Pj.9. Sampling regression parameters (implemented in lassRegressionModelTo redue posterior ovariane between the regression parameters, the ovariatesX2 should be standardized about their sample mean. Where ovariates X2 arenot observed diretly (as for individual admixture), their sample mean is estimatedduring the burn-in period. 9.1. Linear regressionThe model is spei�ed as y � N(X�; �)where y is the response, X are the independent variables (ovariates and individ-ual admixture proportions), � is the vetor of regression parameters and � is thepreision.With the referene prior �(�; �) = ��1, the marginal posterior distribution of(�) isp(�; � j z) = St�� �����n; 12XtX(n� k)��1n ; n� k� � N�� �����n; 12XtX(n� k � 2)��1n �where �n = (X tX)�1Xty �n = 12(y �X�n)tyThe marginal density of any subvetor of a multivariate Student distribution St(x j�;�; �) is Student, with mean vetor and inverse of the preision matrix given bythe orresponding subvetor of � and submatrix �.*** omment - algorithm for logisti regression should be doumented, preferablyin terms of a generalized linear model.



{ 13 {10. Sampling haplotype pairs and haplotype frequenies (implementedin lasses Composite Lous and AlleleFrequenies)Under a model with no dispersion, it is straightforward to sample the orderedhaplotype pairs one we have sampled the ordered states of lous anestry on eahgamete.The simplest way to sample ordered haplotype pairs at eah lous in eah indi-vidual is to ondition on the anestry-spei� haplotype frequenies, as well as theobserved genotypes, and the ordered state of lous anestry.Alternatively, we an integrate out the anestry-spei� haplotype frequeniesand update eah individual's haplotypes onditional on the Dirihlet prior � andthe realized haplotype ounts in all other individuals.The haplotype frequenies � an then be sampled onditional on the prior andthe realized ounts, as a onjugate Dirihlet distribution.The full onditional for updating a pair xi of haplotypes in the ith individual,onditional on the realized haplotype ounts in all other individuals, isP [xi = (g; h) j X�i; Y ℄ / (ng + �g) (nh + �h)where ng and nh are the realized ounts of haplotypes g and h in all other indi-viduals in the subpopulations of anestry of paternal and maternal gametes at thislous, �g and �h are the orresponding elements of the Dirihlet parameter vetors,and Xi is the vetor of realized haplotype pairs in all other individuals.Niu T et al (AJHG, 2002) all this algorithm preditive updating.*** problem with this algorithm - sampling of individuals are not onditionallyindependent given the population parameters. This won't be easy to parallelize- for parallel version, we maybe should use the simpler algorithm onditioning onanestry-spei� haplotype frequenies instead.*** hek the ode - is this really what we're doing?*** to speed up omputation for large haplotypes, we may have to use partition-ligation (Niu 2002)10.1. Sampling the Dirihlet parameters for anestry-spei�haplotype frequenies under a dispersion modelUnder a dispersion model, the Dirihlet parameters for anestry-spei� haplo-type frequenies are not spei�ed as onstants but have a stohasti dependeneon the frequenies in a hypothetial anestral population from whih both modernunadmixed desendants and the admixed population under study are derived.



{ 14 {The Dirihlet parameter vetor is reparameterized as a vetor of proportions �and sum of Dirihlet parameters �.The joint density for the anestry-spei� haplotype frequenies � at a ompoundlous with H haplotypes, onditional on �, � is given by the Dirihlet density�(� j �;�) = �(�)�(� �P�i)Q�(�h)�n)��P �h�1 H�1Yh=1 ��h�1iThis is also the likelihood funtion for the dispersion parameter � and the Dirih-let parameters �, given realized haplotype frequenies �.The problem is to sample the Dirihlet proportion vetor �, onditional on therealized haplotype ounts. If � is univariate (in other words, if the lous is dialleli)we an sample � diretly from the produt of two beta-binomial likelihoodsp(� j �; ni; r(i)) / 1�((� � �)�(�))2 2Yi=1��� � �+ ni � r(i)����+ r(i)�where i = 1 for unadmixed modern desendants and i = 2 for the admixed popu-lation and ni and r(i) are the realized haplotype ounts in the sampled individuals.r1 of n1 gametes inFor multivariate � we have to use a Metropolis update. We propose �0 from�0� � Di��� �q(�0) = nYh=1 f�(�h)g�1��0h� ��hp(� j r) = 1QHh=1 �(��h)2 2Yi=1 HYh=1����h + r(i)h �*** omment - maybe a better proposal density would be to draw elements �hin sequene, at eah step subtrating the realized ount for haplotype h from thetotal haplotype ount, and subtrating the drawn element �h from the sum �.� is sampled by a random walk. To maximize step size we propose �0; �0, where�0 = �0�� . Thus a new �0 is only a hange in dispersion.p(� j �; ni; r(i)) / 1� expn��2(log � �  )2o f�(�)g2m mYj=1 nYl=1 ��(1)lj �(2)lj ��lj�1�(�lj)



{ 15 {*** omment - hek this please.We an then sample the haplotype frequenies � onditional on the Dirihletparameters �; � and the realized haplotype ounts.11. Constrution of sore tests based on the missing-data likelihoodWe write U(�;Y ) for the observed-data sore dd� logf(Y j �), and I(�;Y ) for theobserved information � d2d�2 logf(Y j �).The omplete-data log-likelihood an be partitioned into the observed data log-likelihood and the missing-data log-likelihood (Dempster, Laird and Rubin 1977).log f(Y;X j �) = log f(Y j �) + log f(X j Y; �) (3)Di�erentiating with respet to � and taking expetations over the posterior dis-tribution of the missing data X yieldsEXjY;� � dd� log f(Y;X j �)� = U(�;Y )as EXjY;� � dd� log f(X j Y )�, the expetation of a sore over the probability of thedata, is zero. We an thus evaluate the sore U(�;Y ) as the posterior expetationof the omplete-data sore dd� log f(Y;X j �)Di�erentiatng again, and taking expetations over the posterior distribution leadsto the result�EXjY;� � d2d�2 log f(Y;X j �)� = I(�;Y ) + VarXjY;� � dd� log f(Y;X j Y; �)�This result an be interpreted asComplete information = observed information + missing informationThe algorithm for the sore test, applied to a Bayesian full probability model inwhih the parameter � is �xed at its null value �0, with samples from the posteriordistribution of the missing data X given the observed data Y generated by MCMCsimulation, is as follows:-1. At eah realization of the omplete data, ompute the realized sore vetorand information matrix based on the omplete-data likelihood at �0, and a-umulate the results to evaluate:-� the sore U as the posterior mean of the realized sore.



{ 16 {� the omplete information as the posterior mean of the realized informa-tion� the missing information as the posterior variane of the realized sore.2. At the end of the run, alulate the observed information V as the ompleteinformation minus the missing information3. Calulate the sore test statisti as UV �1=2 for salar U, or U 0V �1U where Uis a vetor. 11.1. Rao-BlakwellizationIn tests for the e�et of lous anestry, the omputational eÆieny is improvedby using a Rao-Blakwellized estimator of the sore as desribed below. Supposethat we are sampling the posterior distribution of an unobserved variable X, whihhas a likelihood in the exponential family for the parameter of interest �. For anexponential likelihood, the sore for a single observation xi has the form observedminus expeted, weighted by a funtion ai of a dispersion parameter �.xi � �iai(�)If we an ompute the marginal distribution of xi at eah iteration, onditionalon the model parameter � and observed data Y , we an an evaluate the posteriorexpetation of the sore asU(�;Y ) = E�jX;Y �EXjY;��xi � �ai(�) ��= E�jX;Y �EXjY;� (xi)� �ai(�) �The missing information is then the sum of two omponents: the posterior vari-ane of the onditional expetation of the omplete-data sore, and the posteriorexpetation of the onditional variane of the omplete-data sore.VarXjY;� [U(�;Y;X)℄ = Var�jY �EXj�;Y [U(�;Y;X)℄�+ EY jX �VarXjY;� (U(�;Y;X))�= Var�jY �EXjY;� (xi)� �ai(�) �+ E�jY �VarXjY;� (xi)� �ai(�) �



{ 17 {The �rst term measures the information that is missing beause of unertaintyabout the model parameter �, and the seond term measures the information thatis missing beause of unertainty about the latent variable X.11.2. Sore ovariane with other model parametersWe test eah lous for assoiation of a latent variable X1 at the lous with theoutome Y under study, while adjusting for ovariates X2, inluding geneti bak-ground, in a generalized linear model of the form g (E [Y ℄) = [X1;X2℄0[�1; �2℄, whereg() is a link funtion. As X1 is not observed diretly, we sample from its posteriordistribution given the observed genotype data. For a likelihood in the exponen-tial family with anonial link funtion, the sore vetor for the ith observation at�1 = 0 has the formU(�;Y;X) = " U(�1;Y;X)U(�2;Y;X) # = pi� " xi1 �yi � g�1[�i℄�xi2 �yi � g�1[�i℄� #where where � is the dispersion parameter, pi is a known prior weight, and�i = x0i2�2.The information matrix has the formV(�;Y;X) = " V11 V12V12 V22 # = pi� " x0i1xi1 x0i1xi2x0i2xi1 x0i2xi2 # dd�i g�1[�i℄If there is ovariane between U(�1) and U(�2), the posterior variane of U(�1;Y;X)will inlude a omponent attributable to unertainty in the model parameters �2.This is undesirable for two reasons. First, it inreases the omputational workload,as longer runs are required to evaluate the di�erene between the omplete andmissing information. Seond, it ompliates the interpretation of the proportion ofinformation extrated as a measure of the eÆieny of the design, in relation to anideal experiment in whih the variables Y and X are observed diretly.To eliminate this ovariane, we an standardize the omplete-data sore and in-formation algebraially. Over the probability distribution of Y in hypothetial repe-titions of the experiment, the asymptoti distribution of the sore vetor U(�1; Y;X)given U(�2;Y;X) is multivariate normal with mean V12V �122 U(�2;Y;X) and varianeV11 � V12V �122 V21For eah realization of the omplete data, we alulate the ovariane matrix V bysumming over all observations, and use this to alulate the onditional expetationEY jX;�1;�2 [U(�1;Y;X) j U(�2;Y;X)℄



{ 18 {and its onditional variane over the probability distribution of Y .The sore an now be alulated asEX;�2jY;�1 �U (�1;Y;X) �EY jX;�1;�2 (U(�1;Y;X) j U [�2;Y;X℄)�= EX;�2jY;�1 [U (�1;Y;X)℄�EX;�2jY;�1 �EY jX;�1;�2 (U(�1;Y;X) j U [�2;Y;X℄)�The seond term on the right is zero as it is the expetation of a sore over theprobability distribution of the data.= EX;�2jY;�1 [U(�1;Y;X)℄ = U(�1;Y )The omplete information is evaluated as the posterior expetation over X ofV11�V12V �122 V21, and the missing information is evaluated as the posterior varianeof U(�1;Y;X) �EY jX;�1;�2 [U(�1;Y;X) j U(�2;Y;X)℄This algorithm an be extended to exploit the Rao-Blakwellization desribedabove, if we are able to evaluate the marginal onditional expetation and varianeof the latent variable xi1, given a model parameter � and the observed data Y .*** this Rao-Blakwellization is not yet implemented for regression sore tests,but should be soonTo alulate the posterior expetation of the omplete-data sore U1, we replaexi1 in the omplete-data sore and x2i1 in the omplete-data information matrix bytheir posterior expetations. The missing information, standardized for U2, isVarXjY;�1 �U1 �EY jX;�2 (U1 j U2)�whih an be partitioned into two omponents= Var�;�2jY �EXj�;Y �U1 �EY jX;�2 (U1 j U2)��+E�;�2jY �VarXjY;�;�2 �U1 �EY jX;�2 [U1 j U2℄��= Var�;�2jY �EXj�;Y �U1 �EY jX;�2 (U1 j U2)�� + EY jX;�2 �VarXjY;�2 (U1)�as the variane of EY jX;�2 [U1 j U2℄ over the distribution of X given Y; �; �2 iszero.= Var�;�2jY �EXj�;Y �U1 �EY jX;�2 (U1 j U2)��+E�;�2jY �VarXjY;�;�2 (xi1) �yi � g�1[�i℄��Again, these two terms an be interpreted in terms of the soures of unertaintythat ontribute to the missing information.



{ 19 {12. Sore tests for linkage with lous anestry12.1. A�eteds-only sore test for linkageWe de�ne Ai as the number of gene opies at the lous under study that haveanestry from the high-risk population. �i1 and �i2 are the paternal and maternaladmixture proportions.The parameter under test is the anestry risk ratio r. The likelihood funtion isa trinomial (sum of two bernoulli variates).The sore U with respet to log r at log r = 0 is given byU = 12 nXi=1(Ai � �i1 � �i2)The information I is given byI = 14 nXi=1 [�i1 (1� �i1) + �i2 (1� �i2))℄*** ode in program may ompute sore and info for eah gamete separately, thenompute info for 1 individual by adding varianes orreted for ovariane. Simplerto alulate it as above.Rao-Blakwellised estimate of E(U) an be obtained by replaing Ai by its on-ditional expetation, obtained from the HMM marginal onditional distribution.Conditional variane of U is obtained similarly from this marginal distribution.12.2. Regression-based sore tests (implemented in lass SoreTests)These sore tests test loi one at a time for assoiation of a latent variable X1(anestry or haplotype ount) at the lous with the outome Y under study, whileadjusting for ovariates X2, inluding geneti bakground, in a generalized linearmodel of the form g (E [Y ℄) = [X1;X2℄0[�1; �2℄, where g() is a link funtion.The sore and information are omputed from the expressions given earlier for ageneralized linear model with anonial link funtion.12.3. Regression-based sore test for linkage with binary outome(implemented in lass SoreTests)For a binary outome, the link funtion is logisti, the dispersion parameter is 1,and the derivative of the inverse link funtion is



{ 20 {f(1� f) where f is the expeted value of Y given X, alulated by applying thethe inverse link funtion to X 0�.12.4. Sore test for linkage with quantitative trait (linear regressionmodel)For a quantitative trait, the link funtion is the identity funtion, the dispersionparameter is the preision, and the derivative of the inverse link funtion is 1.13. Sore tests for assoiation with alleles or haplotypes13.1. Sore tests for alleli assoiation onditional on lous anestry(not yet implemented)For a lous with H haplotypes with anestry spei� haplotype frequenies � =(�1; : : : ; �s�1), the likelihood of observing r = (r1; : : : ; rH) where rh is the realizedount of haplotype h. The omplete-data likelihood is;L = (1�X�k)rs s�1Yk=1�rkklogL = rs log(1�X�k) + s�1Xk=1 rk log �kdd�i logL = ri�i � rn(1�P�k)d2d�2i logL = � ri�2i � rn(1�P�k)2d2d�i�j logL = � rn(1�P�k)214. Computing the log-likelihood funtion (not yet implemented)The p-value omputed from the sore test is useful when sreening many nullhypotheses to deide whih ones to investigate further. For quantitative inferene,we require the log-likelihood for the salar parameter �. For admixture mapping,inferene is based on anestry X at the lous under study, and the probability of theobserved genotype data Y at all loi, given X and model parameters whih inludeallele frequenies and parental admixture, does not depend upon the parameterunder test (the anestry risk ratio �). Although P (Y j X;�; �) is an integral overstates at other loi X? of the form PP (Y;X? j X;�; �), the model spei�es that



{ 21 {the outome is dependent only upon anestry at the lous under test and �, so thatP (Y;X? j X;�; �) does not depend on �. It follows thatP (Y j X;�; �) = P (Y j X;�; �0)Similarly, in a geneti assoiation study of the e�et of unobserved haplotypes,the probability of the unphased genotype data given the pair of haplotypes doesnot depend upon the parameter under test (the e�et of the haplotype upon theoutome. In this situation it is possible to ompute the log-likelihood funtion di-retly as a funtion of �, if we an evaluate the marginal onditional distributionP (X j Y; �; �0).Thompson and Guo (1991) show that the marginal log-likelihood ratio an be eval-uated as the expetation of the omplete-data log-likelihood ratio over the posteriordistribution of the missing data under the null hypothesis.L (�;Y ) = P (Y j �)P (Y j �0) = EXjY;�0 � P (Y;X j �)P (Y;X j �0)�We an rewrite this expetation in Rao-Blakwellized form as the expetation ofa onditional expetationL (�;Y ) = E�jY;�0 �EXjY;�;�0 � P (X j �; �)P (Y j X;�; �)P (X j �; �0)P (Y j X;�; �0)��If P (Y j X;�; �) = P (Y j X;�; �0)L (�;Y ) = E�jY;�0 �EXjY;�;�0 � P (X j �; �)P (X j �; �0)��For disrete X with �nite range of values, the inner expetation an be evaluatedexatly, giving L (�;Y ) = E�jY;�0  XX P (X j �; �)P (X j �; �0)P (X j Y; �; �0)!To evaluate the log-likelihood funtion, we an ompute the log of this likelihoodratio at multiple values of � in a single run of the MCMC sampler.Examples of this algorithm: Patterson 2004, Holmans 2002 (asribed to Rie)15. Model hoie and model diagnostisTo hoose between alternative models, we should ompute the marginal likelihoodof the model (evidene). This is urrently implemented only for analyses of a singleindividual.



{ 22 {We also provide model diagnostis, based on sore tests or on the posterior pre-ditive hek probability, to allow the user to identify spei� ways in whih themodel �ts the data poorly.15.1. Computation of marginal likelihood, implemented in lass ChibChib (1995) suggests alulating the marginal likelihood p(y) aslog p(y) = log p(y j ��) + log p(��)� log p(�� j y)This follows from Bayes theorem and holds for any ��. Typially, it is straight-forward to evaluate p(y j ��) and log p(��), thus we just need an estimate of theposterior ordinate p(�� j y). This is most eÆiently estimated if �� is at or nearits posterior mode.If we speify a non-hierarhial model (independent priors on the admixture pro-portions of eah individual, and a global sum of intensities parameter), the modelparameters � are �;� and �: respetively individual admixture, anestry-spei�allele frequenies and sum of intensities.The posterior density of � an be written asp(� j y) = Z p(� j y;z)p(z j y)dzConditional on the latent variables z - anestry states at eah lous and thenumber of arrivals in eah interval between loi - the full onditional density of �is the produt of full onditional densities of �;� and �, whih are onjugate andan be evaluated diretly at eah realization of z.We an thus evaluate the posterior ordinate p(�� j y) with the following MonteCarlo estimate. p̂(�� j y) = 1M MXi=1 p(�� j y;z(i)):The posterior modes of �;� and � are estimated during the burn-in period.In the urrent version of the program, this method is implemented only for dataon a single individual.*** for given allele frequenies, a more eÆient algorithm would be to alulatethe likelihood at �� using the HMM, without onditioning on lous anestry states.Then use Metropolis proposal steps to estimate the posterior ordinate. With a prioron allele frequenies, this would be more ompliated.



{ 23 {*** an this be extended to a hierarhial model for admixture and sum inten-sities? We would have to group the parameters into bloks (one blok for eahindividual, one blok for eah population-level parameter).**** should test other algorithms for alulation of evidene: annealing, or nestedsampling15.2. Sore test for mis-spei�ation of anestry-spei� allelefrequenies at a dialleli lousWith k populations, the probabilities of observing 0, 1 or 2 opies of allele 1,onditional on parental admixture, are given by;P (X = 0) = �(0) = kXi kXj qiqj�(P )i �(M)jP (X = 1) = �(1) = kXi kXj qipj�(P )i �(M)j + kXi kXj piqj�(P )i �(M)jP (X = 2) = �(2) = kXi kXj pipj�(P )i �(M)j :where pi is the frequeny of allele 1 in population i and qi = 1� pi.The sore is obtained by di�erentiating the logarithms of these expressions withrespet to pi; i = 1; : : : ; k.U (0) = �U (0)1 ; : : : ; U (0)k �U (0)i = 1�(0) 0��2qi�ii � kXj 6=i qj(�ij + �ji)1AU (1) = �U (1)1 ; : : : ; U (1)k �U (1)i = 1�(1) 0�2(qi � pi)�ii + kXj 6=i(qj � pj)(�ij + �ji)1AU (2) = �U (2)1 ; : : : ; U (2)k �U (2)i = 1�(2) 0�2pi�ii + kXj 6=i pj(�ij + �ji)1AWhere �ij = �(P )i �(M)j .



{ 24 {
I(0)ii = �U (0)i �2 � 2�ii�(0)I(0)ij = U (0)i U (0)j � (�ij + �ji)�(0)I(1)ii = �U (1)i �2 + 4�ii�(0)I(1)ij = U (1)i U (1)j + 2(�ij + �ji)�(1)I(2)ii = �U (2)i �2 � 2�ii�(2)I(2)ij = U (2)i U (2)j � (�ij + �ji)�(2)With this test onditional on gamete admixture, we are inferring mis-spei�edallele frequenies by omparing the observed and expeted allele ounts given eahindividual's admixture proportions. The sores for misspei�ation of allele frequen-ies in di�erent subpopulations at the same lous are orrelated with eah other.By onditioning on lous anestry we an derive tests for mis-spei�ed allelefrequenies that are independent aross subpopulations.*** is this now implemented in the ode?15.3. Posterior preditive hek test for residual populationstrati�ation*** the urrent version of the program uses for this test all loi that are at leastx M apart (what is x?). This is not a pure test for strati�ation*** the ode for this test should be �xed to use only unlinked loi* we might have a more eÆient test if we use a weighted sum of allele sores atall loi on eah hromosome, obtained as the �rst prinipal omponent.This test exploits the argument that if all population strati�ation has beenaounted for, there should be no residual alleli assoiation between unlinked loi.We onstrut test statistis and alulate them for the observed and repliate datasets.We hoose a single simple lous from eah hromosome, dihotomize the allelesinto two bins at any lous where there are more than two alleles, and ompute foreah individual the observed minus expeted ount of allele 1, where the expetedount is a weighted average of the anestry-spei� allele frequenies with weightsgiven by the admixture proportions of the two gametes. We then ompute theovariane matrix between these observed minus expeted ounts. In other words,



{ 25 {these are partial ovarianes.The matrix of ovarianes between ounts of allele 1 at these unlinked loi isalulated as matrix A = faijg whereaij =Xk [Xik � E(Xik j �k)℄[Xjk � E(Xjk j �k)℄At eah realization of the sampled alleles and allele frequenies, we omputethe �rst eigenvalue of this matrix, divided by the trae (sum of eigenvalues). Ifthis proportion is higher than expeted by hane, it indiates that there is anunderlying fator giving rise to alleli assoiations between unlinked loi. This ratioT is omputed as Tobs for the observed alleles and as Trep for a repliate datasetwith alleles sampled onditional on the anestry-spei� frequenies and gameteadmixture proportions. The posterior preditive hek probability is the posteriorfrequeny with whih Trep > Tobs.15.4. Posterior preditive hek test for dispersion between prior andobserved allele frequeniesnjk - number of individuals with anestry k at marker jrjk - vetor of ounts of observed alleles at marker j with anestry k�jk - allele frequeny at marker j in population kGenerate r0jk � Mu(�jk; njk)Compare Tobs (likelihood of rjk) and Trep (likelihood of r0jk).This test statisti is omputed for eah lous in eah subpopulation, and as asummary test over all loi in eah subpopulation.


