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ABSTRACT

Testing hypotheses about the genetic background of individuals and populations is
equivalent to comparing models of parental admixture. Formally, the strength of evi-
dence favouring one model over another is given by the Bayes factor (ratio of marginal
likelihoods). We have extended the ADMIXMAP program to calculate Bayes factors
between different models of parental admixture, and demonstrate applications to in-
ferring individual ancestry, inferring the demographic origin of an unknown individual,
classifying individuals as unadmixed or admixed, and inferring the number of subpopu-
lations ancestral to an admixed population. From comparisons based on Bayes factors it
was possible to infer parental ancestry of each individual, except where the information
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content of the marker panel was inadequate. Inference of individual genetic background
from parameter estimates was often misleading: in a Brazilian population, estimated
admixture proportions were as high as 25% in some individuals for whom Bayes factors
favoured a model with no admixture. In a Hispanic-American population, a widely-used
approximate method for inferring the number of ancestral subpopulations was shown
to yield misleading results, in comparison with direct calculation of Bayes factors. It
is thus both feasible and necessary to calculate Bayes factors when testing hypotheses
about the genetic background of individuals and populations.

Subject headings: admixture, ancestry, forensic
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2. INTRODUCTION

Using genotype data to model genetic admixture or population stratification has several appli-
cations, including admixture mapping to localize genes underlying ethnic variation in disease risk
(1), controlling for hidden population stratification in genetic association studies (2), and inferring
the genetic background of a single individual. To allow for linkage and for uncertainty in allele
frequencies, Bayesian computationally-intensive methods are required. Three such programs are
available, all based on the same statistical model for variation of ancestry on admixed gametes:
STRUCTURE (3), ADMIXMAP (4) and ANCESTRYMAP (5). Tests of hypotheses about the
genetic background of an individual or a population are equivalent to comparing different models
of admixture. However, as others have noted (6), the methods for model comparison implemented
in these programs have limitations, relying either on model diagnostics (7) or on global tests of “fit”
penalized by “complexity” (6). In a Bayesian framework, comparison between models is based on
the marginal likelihood of each model given the data (8). However the marginal likelihood is rarely
calculated when modeling the genetic structure of populations, mainly because of computational
difficulties. In this paper we describe methods implemented in the program ADMIXMAP (4) to
test hypotheses about the genetic background of an individual or population by calculating the
marginal likelihood for any specified model of admixture, given genotype data on one or more ad-
mixed individuals. We demonstrate application of these methods to practical problems, including
inferring the ancestry or demographic background of an unknown individual, classifying individuals
as admixed or unadmixed, and inferring the number of subpopulations ancestral to an admixed
population. These applications illustrate how hypothesis tests can be formulated in terms of model
comparisons, how these Bayesian hypothesis tests differ from classical inference based on the “best-
fit” model, and that a widely-used method for inferring the number of ancestral subpopulations by
calculating an approximation to the marginal likelihood may yield misleading results.

3. MATERIAL AND METHODS
3.1. Individuals and markers

The datasets used in this study come from four sources. In the first dataset, the DNAPrint
panel of 176 SNPs described below was typed on a family of five individuals: parent 1 (author
TNF) who reports Greek ancestry, parent 2 (his wife) who reports Mexican ancestry, and their
three offspring. In the second dataset, the DNAPrint panel was typed on a sample of 142 indi-
viduals resident in five Caribbean countries and 41 individuals of Caribbean origin working in the
Metropolitan Police Service (London, UK), who donated DNA samples to provide a database for
inference of genetic background from genotype data, in response to an appeal for assistance with a
criminal investigation. Questionnaire data on origin of each grandparent were obtained, and the 142
participants were grouped into five categories based on country of origin of both parents: Jamaica
(21), St Lucia (31), St Vincent (28), Trinidad (29), Guyana (31). The third dataset was a case-
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control study of cocaine addiction among residents of Sado Paulo, Brazil, typed at 72 loci from the
Penn State panel of ancestry-informative marker loci supplemented with 3 other loci in candidate
genes (9). The fourth dataset has been described previously (7): 446 Hispanic American individuals
resident in San Luis Valley, Colorado were typed at 22 marker loci chosen to be informative for
three-way admixture between European, Native American and west African ancestry.

The DNAPrint marker panel (DNAPrint, Sarasota, FL) consists of 176 autosomal single-
nucleotide polymorphisms (SNPs) selected from some 27000 SNPs for which allele frequency data
in African-American, European-American, and East Asian populations were available on the SNP
Consortium database in 2002. Markers were selected based on T'SC allele frequency differentials and
suitability for multiplex amplification panels. Allele frequencies were re-estimated in a sample of
70 west Africans, 59 Native Americans (Mayans from southern Mexico), 58 Europeans (European-
American college students), and 59 East Asians (Coriell Institute panel augmented with Chinese-
Americans). Allele frequencies in other populations were estimated from 56 South Asians, 14 Pacific
islanders, and 20 individuals of Middle Eastern origin from the Coriell repository.

Linkage map positions of all markers were estimated by interpolation between markers in the
Rutgers Combined Linkage-Physical Map (10). Before interpolation, the linkage map position es-
timates in the Rutgers map were smoothed to use prior information from physical map distances
over short intervals where little information is available from the linkage map. An online resource
for calculating smoothed estimates of map positions is available. Any subsequence of loci separated
by less than 0.1 cM was modeled as a “compound locus” for which haplotype assignments and hap-
lotype frequencies were modeled as described previously. There were 9 such pairs in the DNAPrint
marker panel and one in the marker panels used for the San Paulo and San Luis Valley studies.

3.2. Statistical model for admixture

For each gamete transmitted from an admixed parent with ancestry from K subpopulations,
the model specifies a vector p for the proportions of the parent’s genome that have ancestry
from these subpopulations. The stochastic variation of states of ancestry on chromosomes of this
gamete is modeled as generated by K independent Poisson arrival processes with intensities pu per
morgan, where p is the sum of the intensities of the arrival processes. The arrival rate parameter
p can be interpreted as the effective number of generations back to unadmixed ancestors (3). To
model data on a single individual, we specify for each gamete a uniform Dirichlet prior on parental
admixture proportions p, and a gamma prior on the arrival rate parameter p with mean 6 and
variance 24. To model data on a a sample of individuals, we specify a hierarchical model for u
and p. The prior distribution of gamete admixture proportions in the population is specified as
Dirichlet, with Gamma(1,1) priors on the elements of the parameter vector (equivalent to specifying
a flat prior on the mean admixture proportions). The distribution of the arrival rate parameter
p over gametes in the population is specified as gamma with shape parameter 6 and a gamma
(5, 4) prior on the rate parameter (equivalent to a gamma-gamma prior on p with mean 6 and
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variance 14). These priors on the arrival rate parameter p are based on previous studies of admixed
populations in the Americas which have typically yielded estimates of about 6 for the mean arrival
rate, and on the demographic history of the Americas (from which we can infer that the maximum
possible time back to unadmixed ancestors is about 20 generations). For the Sao Paulo dataset, the
Dirichlet parameters for the distribution of individual admixture proportions in the population were
estimated initially by modeling the entire dataset. These estimates were used to specify the prior
on admixture proportions when fitting a three-way admixture model to each individual separately.

Allele frequencies were specified with Dirichlet prior distributions. At each locus, the Dirichlet
parameter vector was obtained by adding 0.5 to the observed allele counts in samples from unad-
mixed modern descendants of the populations that contributed to the admixed population. This
is equivalent to updating a Dirichlet (0,5, ...,0.5) prior distribution with the likelihood given the
observed allele counts. For diallelic loci, a Dirichlet (0.5,0.5) prior is the standard uninformative
“reference” prior (11).

At each compound locus consisting of two or more markers, the posterior distribution of
haplotype frequencies was generated by running ADMIXMAP with samples from each modern
unadmixed descendants of each ancestral continental group. This posterior distribution was ap-
proximated by a Dirichlet distribution with the same mean and dispersion, and the parameters
of this Dirichlet distribution were used to specify a Dirichlet prior on haplotype frequencies for
subsequent studies of admixed individuals.

Using the ADMIXMAP program (7; 4) to sample the posterior distribution of admixture pro-
portions p and sum-intensities p by Markov chain Monte Carlo (MCMC) simulation, we computed
the marginal likelihood of the model given the data as described below. To search for a mode of the
joint posterior density of admixture proportions g in the softmax (multiple logit) basis and arrival
rates p on a log scale on each gamete, a stochastic EM algorithm was constructed. In each E step,
the posterior expectations of the sufficient statistics described in Appendix C (jump indicators and
total number of arrivals) were evaluated by running the MCMC sampler. In each M step, the mode
of the conjugate distribution conditional on the prior and the sufficient statistics was calculated.
Updates were accepted only if they increased the posterior density.

3.3. Information content of the marker panel

To evaluate the adequacy of a marker panel for measuring individual admixture, we consider
a single gamete formed by admixture between two subpopulations, and define the admixture pro-
portion p as the proportion of the parent’s genome that has ancestry from the first subpopulation.
We calculate the admixture information content of the marker panel as minus the expectation of
the second derivative of the log-likelihood function. This is the Fisher information about u, asymp-
totically equal to the variance of the maximum-likelihood estimator. Thus to estimate two-way
admixture proportions at p = 0.5 with a standard error of less than 0.1 requires that the Fisher



information is greater than 100.

The information content for admixture proportions p of an infinitely dense panel of ancestry-
informative markers is (C' + pL) /[ (1 — )] — 2pL, where C' is the number of autosomes, and L
is the length of the genome in morgans (see Appendix A for derivation). The information content
for log p is 2u (1 — ) pL. Thus for C' = 22, L = 37.75, n = 0.5, and p = 6 (the value estimated
for African-American populations) (4), the information content of a infinitely dense marker panel
is 541 for admixture proportions u (equivalent to 135 fully-informative unlinked loci) and 113 for
log p. Thus even with a maximally informative marker panel and no uncertainty about phase, the
standard errors of estimates of gamete admixture proportions and log p cannot be reduced to much
less than about 0.05 and 0.1 respectively. The ancestry information content of a single marker
can be measured by the f-value (12), defined as the ratio of the information extracted by the
marker at u = 0.5 to the information that would be extracted by a perfectly informative marker
locus at which different alleles are fixed in each ancestral subpopulation. The information content
at u = 0.5 of a panel of m unlinked marker loci with information content fi,..., fm is 4> fi.
The admixture information content of a panel of linked markers can be evaluated by averaging
the second derivative of the log-likelihood (calculated as described in Appendix B) over simulated
datasets.

The ability of a marker panel to detect or exclude small degrees of admixture can be mea-
sured by the Kullback-Leibler divergence: the expected log-likelihood ratio in favour of the true
model compared with an alternative (false) model. For a panel of linked markers, the expected log-
likelihood ratio can be evaluated by averaging over simulated datasets, using the standard hidden
Markov model algorithm (13) to calculate the likelihood at given values of the parameters p and
p. For these simulations, the arrival rate rho was specified as 6 per morgan. each pair of subpopu-
lations, we evaluated the admixture information content, and the expected log-likelihood ratio for
a true model of no admixture (1 = 0) versus an alternative model of admixture with p = 0.125
by averaging over 1000 simulated datasets. The number of simulations was set by increasing the
number of runs until stable estimates of admixture information content and expected log-likelihood
ratio were obtained.

3.4. Calculation of the marginal likelihood (evidence) for a model

In a Bayesian framework, tests of hypotheses are based on comparing for each model M the
probability P(y | M) of the observed data y. The terms “prior predictive probability” and “marginal
likelihood” have been used for the probability P(y | M); more recently the term “evidence” has
been proposed (14; 15) and will be used here. The ratio of evidence values between two models is
the Bayes factor, reported here in units of natural logarithms (nats). A log Bayes factor of 2 nats
between two hypotheses is approximately equivalent to an eightfold ratio of posterior to prior odds
in favour of the most likely model.
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To test hypotheses about whether one or both of an individual’s parents have admixture from
two or more continental groups, we compare the evidence values of models with and without such
admixture, given the individual’s observed genotype data. To calculate the evidence P (y | M)
it is not feasible to evaluate directly the expectation of the likelihood P(y | 8, M) for the model
parameters 0 over the prior distribution P (@ | M). For models of the ancestry of the two gametes
in a single individual, we have used the candidate’s formula (16; 17) to calculate the evidence from
Markov chain Monte Carlo output. The candidate’s formula rewrites Bayes’s theorem to express
the evidence P (y | M) for a model M given observed data y as

P | M)

Py|M)=P(y| 6" M) x G

where 0" is any fixed value of the parameter vector. If 8* is the posterior mode, the evidence
can be expressed as the product of the best-fit likelihood P (y | 8%, M) and the Occam factor
P(6*| M) /P (6" |y, M) which is the ratio of prior to posterior density at the posterior mode.
The Occam factor can be interpreted as a penalty for “complexity” (15).

For a model of admixture in a single individual, the parameter vector @ comprises the gamete
admixture proportion vectors py, to, the arrival rate parameters pi, p2 and the array of allele fre-
quencies ¢ = (¢, - .., ¢ ) for K ancestral subpopulations at T' loci. The likelihood p (y | 8*, M)
is calculated from the standard sum-product algorithm for a hidden Markov model (13). The prior
density P(0* | M) is evaluated directly as the product at 8* of the prior densities specified for pu, p
and ¢. The posterior density P(0 | y, M) is computed by averaging over the posterior distribution
as described in Appendix C.

With a sample of individuals from the population, we have a hierarchical model, in which
prior distributions are specified for the parameters of the Dirichlet distribution of admixture
proportions and the gamma distribution of arrival rates on gametes in the population. As the
prior on the individual parameters is not available in closed form, it is not computationally fea-
sible to use the candidate’s formula to evaluate the evidence P (y | M) (6). Instead we use the
method of “thermodynamic integration” (18). We extend the Markov chain Monte Carlo sam-
pling algorithm to sample at “coolness” (inverse temperature) A from a modified posterior density
P\(08) x [P (y| 6, M)]*P (6| M) in which the likelihood has been “annealed” by raising it to the
power A. At coolness 0, we are sampling from the prior, and at coolness 1 we are sampling the
unmodified posterior. If the prior is reparameterized as a uniform distribution over a large number
of discrete microstates indexed by x, this modified posterior density can be written in the form of

a Gibbs distribution.
e—)\E(m)

P@)="Zr (1)

where the “energy” E (z) is minus log P (y | ), and the normalizing constant Z ()), equal to
S e E (#) | is the partition function (number of microstates accessible at coolness \). This formu-
lation of the inference problem allows us to use tools from statistical mechanics, in which the Gibbs
distribution arises as the distribution of energy levels of a system in a heat bath at temperature
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1/A. Thus the mean energy (E)) at coolness A is equal to minus dlog Z (\) /dA (15), and the log
evidence is

logP(y| M)=1logZ (1) —logZ(0) = /1 dlog Z(%) _ —/1 (Ey) dA

0 dA 0
At coolness A, the mean energy (F)) can be evaluated as the mean of minus the log-likelihood
P (y|6,M) over samples from the modified posterior density Py (0). The integral over A can be
evaluated by averaging (FE)) over values of A between 0 and 1. The difference between the posterior
mean of the log-likelihood log P(y | 8, M) and the log evidence log P(y | M) is the information
(reduction in entropy) obtained by fitting the model to the data. The information, like the Occam
factor, can be interpreted as a penalty for complexity, and a plot of (E) against A can be interpreted
visually as showing how the fit of the model (measured by the mean energy at A = 1) is penalized
by the adaptation of model parameters to the data (represented by the fall in energy as the system
is cooled).

The implementation of annealed sampling in ADMIXMAP is described in Appendix D. To test
hypotheses about the country of origin of an unknown individual ¢, we use genotype data ys from
individuals from each country of origin to generate draws from the posterior distribution P (0 | ys)
of model parameters, and re-use these values in a model that specifies them as draws from the prior
distribution P (6; | M) on the corresponding parameters 8; for the individual under study. At each
coolness A we evaluate the mean energy (E)) as the expectation of minus log P (y | 6;)\ over the
modified posterior Py (6;) o« [P (y | 65, M)]* P (6; | M).

4. RESULTS
4.1. Calculated information content of the DNAPrint marker panel

Table 1 shows the Fisher information for gamete admixture proportions of the marker panel
used in this study, calculated from simulations of 1000 gametes formed by two-way admixture
with 4 = 0.5 and p = 6. For this analysis, 3 of the 176 SNPs for which allele frequency data were
incomplete were excluded, and the model assumed no allelic association between SNPs (which would
require haplotypes to be modeled). This shows that the marker panel has adequate information
content (> 50) to measure two-way admixture between west Africans and other groups, or between
Furopeans and East Asians, but not to measure two-way admixture between groups originating on
the western side (Europeans, Middle-Eastern and South Asia) of the Eurasian land mass or between
groups originating on the eastern side (East Asians, Pacific islanders and Native Americans). For
African versus non-African admixture, the information content of the marker panel is of the order
of 10% of the theoretical maximum. For admixture between more closely-related populations such
as Europeans and South Asians, the admixture information content of the marker panel is lower.
If admixture information content of the marker panel were calculated without allowing for linkage,
the calculated values would be about 30% higher than the values shown in table 1 which allow for



linkage.

We evaluated also the ability of the marker panel to detect or exclude small degrees of admix-
ture from another continental group. Table 2 shows the expected log-likelihood ratio in favour of
the true hypothesis (gamete has 12.5% admixture from the subpopulation indexed by the row) ver-
sus the alternative hypothesis (no admixture from this subpopulation). This shows that although
the marker panel can easily detect small degrees of non-African admixture on gametes of mainly
African ancestry, it has rather less ability to exclude small degrees of Native American admixture
on gametes of mainly European ancestry. Thus for a hypothesis of 12.5% Native American ancestry,
87.5% European ancestry, versus a true hypothesis of European ancestry with no Native American
admixture ancestry, the expected log-likelihood ratio info in favour of the true hypothesis is only
0.8 nats.

4.2. Inference of individual ancestry

For each individual in the test family, the first model fitted was one with three-way admixture
on each parental gamete. The subpopulation with the lowest proportionate contribution to the
ancestry of a gamete at the posterior mode was removed from the model for that gamete (by
setting the corresponding element of the Dirichlet prior parameter vector to zero), and the analysis
repeated until removing subpopulations did not increase the evidence value further. Table 3 shows
the results of these analyses. As expected, more complex models (those with more subpopulations
ancestral to each gamete) are penalized more by the Occam factor.

For parent 1 (who reports European ancestry), the highest evidence value was for a model
with both gametes of European ancestry. However the evidence for a model with one European
and one admixed European/Native American was only slightly lower. Even though the evidence
slightly favoured a model with no European admixture, the posterior mode in a model with Native
American admixture on one gamete was at 25% Native American admixture. For parent 2 (who
reports Mexican ancestry), the evidence was highest for models in which one gamete was of unad-
mixed Native American ancestry and the other gamete represented either by three-way admixture
between African, European and Native American, or two-way African/Native American admixture.
For each of the three offspring, the results were consistent with the inferred ancestry of the parents.
The most likely model for each offspring was one in which one parent was unadmixed European and
the other parent was of mixed African/Native American ancestry. However, as with direct analysis
of parent 1, models with Native American admixture in the European-ancestry parent had only
slightly lower evidence values than models in which this parent was of unadmixed European ances-
try. As with direct analysis of parent 2, models with three-way African/European/Native American
admixture had only slightly lower evidence values than models with two-way African/Native Amer-
ican admixture.

Figure 1 shows the joint posterior distribution for the proportions of African admixture on
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each parental gamete of parent 2 in a model that specifies three-way admixture on both parental
gametes. As expected in a model where the two gametes are not identified, this distribution has two
symmetrical modes at which one parental gamete has about 30% African admixture proportion and
the other has about 5% African admixture. Thus even though no information on phase is available,
the program is able to infer that the two parents of parent 2 have different proportions of African
admixture.

4.3. Inferring the demographic origin of an unknown individual

To evaluate the ability to test hypotheses about demographic origin, an individual estimated
to have a high proportion of Native American admixture was chosen from the Trinidad sample. The
log evidence for a model based on origin from each of the five Caribbean regions sampled was then
evaluated by thermodynamic integration. Figure 2 shows plots of the gradient of the log partition
function for each population of origin. The log evidence for each model is equal to the area under
the curve. Table 4 shows the log Bayes factors, relative to the model with highest evidence value
(origin from Trinidad). There is very strong evidence against origin from Jamaica, St Vincent or
Guyana, with log Bayes factors from 9 to 29 nats. A models with origin from St Lucia has only
slightly lower evidence than a model with origin from Trinidad.

4.4. Classifying individuals as admixed or unadmixed

The mean admixture proportions of the Sao Paulo sample in a model of three-way admixture
were estimated as 72% European, 18% African, and 10% Native American. Figure 3 shows for the
1573 individuals in this dataset the relationship of the posterior mode of non-European (African plus
Native American) admixture proportions calculated in a model of three-way admixture to the Bayes
factor in favour of admixture (calculated by comparing a model based on three-way admixture with
a model based on only European ancestry). As one would expect, the estimates of non-European
admixture proportions are correlated with the evidence values in favour of admixture, but the
relationship is far from perfect. For 8% of these individuals, the log Bayes factor is less than -2
nats (equivalent to a likelihood ratio greater than exp(2) in favour of a model with no admixture).
The posterior modes for non-European admixture proportions in these individuals are between 9%
and 18%. Bayes factors less than zero, implying that the evidence favours the hypothesis of no
admixture, are compatible with estimated admixture proportions as high as 25%.
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4.5. Inferring the number of ancestral subpopulations contributing to an admixed
population

Table 5 shows the log evidence values for models with one, two and three ancestral subpopu-
lations fitted to the San Luis Valley dataset. There is strong evidence in favour of the model with
three subpopulations, with log evidence 3.1 nats higher than for a model with two subpopulations,
and 11.4 nats higher than for a single-population model. These results, using uninformative priors
on allele frequencies, are consistent with direct estimates of the genetic background of this popula-
tion using prior information about demographic background and ancestry-specific allele frequencies.
Thus using ADMIXMAP to fit a model of three-way admixture with prior information about allele
frequencies in Europeans, Native Americans and west Africans, the mean admixture proportions
were estimated as 61% European, 34% Native American, and 5% west African. The frequency of
null alleles at the FY (Duffy antigen) locus in this sample is 4.9%, supporting a nonzero contri-
bution of African genes to the ancestry of this population and thus a three-way admixture model.
For comparison, the results of using an approximate method for calculating the log evidence, pro-
posed by Pritchard et al (6) and implemented in the program STRUCTURE, are given in Table
5: in this example, the approximate method does not correctly rank the models by their evidence
values. Figure 4 shows how Pritchard’s statistic is based on approximating the area under each
energy-coolness curve by the area under a straight line. This is discussed in more detail below.

5. DISCUSSION

Using a panel of at least 10 unlinked markers informative for ancestry, it is straightforward to
assign the ancestry of DNA from a single unadmixed individual to one of the three or four main
continental groups that have contributed genes to the US population (19). To test hypotheses about
the ancestry of an admixed individual requires larger numbers of markers and this in turn requires
a more complex statistical model that allows for linkage between marker loci. The calculations
of expected log-likelihood ratio for the DNAPrint marker panel show that a marker panel that is
adequate to estimate individual admixture proportions is not necessarily adequate to distinguish
admixed from unadmixed individuals. Thus, for instance, with the DNAPrint panel of 176 markers
the expected log-likelihood ratio between a model specifying unadmixed European ancestry and
a model specifying a small proportion of Native American admixture is small. Consistent with
these calculations of expected log-likelihood ratio, the Bayes factors obtained in comparisons of
models with and without Native American admixture in individuals of European ancestry are close
to zero. With a larger panel of markers, such limitations could be overcome; the expected log
Bayes factor in favour of the true model should scale arithmetically with the effective number of
unlinked markers. To confirm or exclude admixture, an optimal marker set might include more
markers with alleles that are unique to one of the putative ancestral populations (20). In principle
it is possible to distinguish between recent and long-standing admixture in the genetic background
of an individual’s parents by inferring the arrival rate parameter on each gamete, but this would
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require a larger panel of informative markers than the 176 used in this example.

Although Bayesian and sampling-theory (“frequentist”) approaches to estimation of model
parameters generally yield similar results in large samples, the Bayesian approach to model com-
parison differs profoundly from sampling-theory approaches. Classical linkage tests using LOD
scores to compare models with fixed parameters are a special case of the Bayesian approach. In
the more general Bayesian approach, model parameters are specified with prior distributions and
the evidence for each model is the likelihood averaged over the prior. Inference based on Bayes
factors is a corollary of using probabilities to represent uncertainty about hypotheses, underpinned
by the work of Cox (8), who showed that probability theory is the only set of rules for manipulating
uncertainty about propositions that does not violate axioms of logical consistency (14).

Although Bayesian computationally-intensive methods are widely used in statistical genetics,
model comparisons based on Bayes factors are rarely undertaken because of the computational
difficulties of evaluating the likelihood as an average over the prior on model parameters. Of the
two methods described here, the candidate’s formula is the most efficient when the prior density
is available in closed form, but the thermodynamic algorithm has a wider range of application to
complex models. With both methods, the log evidence is evaluated by subtracting a measure of
“complexity” from a measure of “fit”. In the candidate’s formula, minus the log Occam factor is
subtracted from the log best-fit likelihood. In the thermodynamic algorithm the information (re-
duction in entropy) is subtracted from the posterior mean of the log-likelihood (minus the energy).

As others have emphasized (6), a key practical problem in modeling admixture is to infer
how many subpopulations (with unspecified allele frequencies) or which subpopulations (where
prior information on allele frequencies is available) should be included in the model. (author?)
(6) have proposed, and implemented in their program STRUCTURE for modeling admixture, an
approximate method for calculating the log evidence, in which half the posterior variance of the
log-likelihood is subtracted from the posterior mean of the log-likelihood. As this approximate
method has been widely used to infer the number of ancestral subpopulations contributing to the
gene pool of an admixed or stratified population (21; 22; 23; 24; 25), it is of interest to compare it
with direct evaluation of the log evidence by thermodynamic integration. For this comparison we
can use a thermodynamic analogy, in which the log-likelihood is minus the “energy” of a system in
a heat bath. The variance of the energy is equal to minus the gradient of mean energy with respect
to coolness (15). Thus in figure 4, where the log evidence for each model is minus the area under
the curve, the method implemented by Pritchard et al. is equivalent to approximating the area
under the curve by the area under a tangent to the curve at coolness of 1. Inspection of Figure 4
shows that the area under each curve is poorly approximated by the area under the corresponding
tangent, at least in this example where the energy of models with two and three subpopulations
falls sharply as the coolness approaches 1. Pritchard’s method should not be expected to yield
more accurate results with larger sample sizes or more marker loci, as the curve relating energy to
coolness does not in general approximate a straight line as the amount of information increases.
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The analyses of individuals in the test family demonstrate that even with this limited marker
set, the program is able to infer the ancestry of each parental gamete separately. Where the prior
on admixture proportions is the same on the two gametes, the two gametes are not identifiable in
the model but the program is able to infer two symmetrical modes in the posterior distribution of
admixture proportions. For each individual in the test family the model with the highest evidence
value is the one consistent with the known ancestry of the individuals under study. However
the marker set has only limited ability to exclude Native American admixture in an individual
of European ancestry. This is consistent with direct calculations of the expected likelihood ratio
based on the marker allele frequencies. If X chromosome markers were included in the analysis,
the two gametes would be identifiable in the model. Even without X chromosome data, inference
of the continental origin of the mitochondrial and Y haplotypes could be used to restrict the set of
models that are compatible with the data.

The usual method of classifying individuals as admixed or unadmixed is to define a cutoff based
on the maximum likelihood estimate or posterior mean of individual admixture proportions (6).
Our results show, however, that the posterior mode of individual admixture proportions (equivalent,
where the prior is flat, to the maximum likelihood estimate) is not necessarily a reliable guide to the
evidence that an individual is admixed. Thus, for instance, fitting a model with Native American
admixture on one gamete to an individual of European origin without known ancestry from the
American continent in the test family yielded a posterior mode of 25% Native American admixture
on this gamete. Calculation of the evidence, however, shows that the data give slightly more
support to the (presumably correct) model of unadmixed European ancestry than to a model with
Native American admixture for this individual. The analyses of the Sdo Paulo case-control dataset
again demonstrate that estimates of admixture proportions may be misleading with respect to
the strength of evidence that an individual is admixed rather than unadmixed: for about 8% of
the sample, there is fairly strong evidence against non-European admixture even though for these
individuals the proportion of non-European admixture is typically estimated (as the posterior mode)
to be greater than 10%.

The methods described here have practical applications to modeling admixture, and more
generally to any Bayesian modeling of genetic data using MCMC simulation. For instance, some
studies require restriction of the analysis to unadmixed individuals, as when estimating allele fre-
quencies in continental populations. For admixture mapping, on the other hand, it is desirable to
restrict the analysis to admixed individuals before typing genome-wide mapping panels of markers
informative for ancestry (4; 26). Where a case-control sample appears to consist of a mixture
of admixed and unadmixed individuals, as in the Brazilian case-control dataset examined here,
it might be appropriate to classify individuals as unadmixed or admixed so that the two groups
can be analysed separately. Another application is to predict the biogeographical ancestry of an
unknown individual whose DNA has been recovered from the scene of a crime. In principle, it is
possible to infer the ancestry of each parental gamete, and to distinguish recent admixture from
admixture that occurred many generations earlier. The objective of such analyses is not, of course,
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to establish a match with the identity of a known individual, but rather to infer the demographic
background of an unknown individual and thus to narrow the field of enquiry. For instance, if the
analysis yields evidence that one or both parents of an individual whose DNA has been recovered
from a crime scene has Native American ancestry, then this restricts the field of enquiry to in-
dividuals whose demographic origins have some connection with the American continent. Other
possible applications are in pharmacogenetics. Where an individual has ancestry from two or more
subpopulations that vary in drug response, it may be possible to make useful predictions of drug
response from the proportion of the individual’s genome that has ancestry from each subpopulation
(27). This may help to refine the design and analysis of clinical trials.

Although the thermodynamic algorithm is computationally intensive (requiring about 6 h of
CPU time for a dataset based on 22 marker loci typed in 446 individuals, it is amenable to parallel
computation on a cluster, simply by running copies of the sampler at different coolnesses. As
computation time for the algorithms used in ADMIXMAP scales arithmetically with the number
of marker loci and the number of individuals sampled, it is possible to analyse even large datasets
where a cluster of a few hundred CPUs is available. Our results demonstrate that it is both feasible
and necessary to calculate Bayes factors when testing hypotheses about the genetic background of
individuals and populations.
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A. Information content of a dense panel of ancestry-informative markers for
individual genetic background

The efficiency of a marker panel for estimating the genetic background of an individual can be
evaluated by comparing it with the information extracted by a dense marker panel that allows an-
cestry states to be inferred without uncertainty at all positions on all chromosomes. This maximum
information content can be derived from the missing information principle (28). For a genome of
length L and a single gamete, the observed data are the number r of chromosomes that begin in
state 1, the number y; of arrivals of state 1 that change the ancestry state from 2 to 1, the number
yo of arrivals of state 2 that change the ancestry state from 1 to 2, and the observed fraction m
of the genome that is in state 1. The missing data are the number z; of unobserved arrivals of
state 1 and the number x5 of unobserved arrivals of state 2. The complete-data log-likelihood is
the sum of two Poisson log-likelihoods with parameters ppL and (1 — ) pL, and a binomial log-
likelihood with parameter u. This can be rearranged, ignoring constant terms, as the sum of a
Poisson log-likelihood for p and a binomial log-likelihood for .

—pL+ (z1+y1 + 22+ y2)logp+ (z1 +y1 +7)logp+ (w2 +y2 + C —7)log (1 — p)

Given the observed proportion f, x1,xs are distributed as independent Poisson variates with
parameters umpL and (1 — ) (1 —m) pL respectively. The observed information is calculated as
the difference between the complete information (minus the posterior expectation of the second
derivative of the log-likelihood) and the missing information (posterior variance of the score). For
1, the observed information evaluates to

C—r+(1—,u)(1—m)pL+y2+r+umpL+y1_( m 1_m>pL

_|_
(1—p)? p? L—p p

Over repeated experiments, the expectations of » and m are C'u and (1 — ). The expectation of y;
and yo is (1 — p)) pL. The expected observed information is therefore (C' + pL) / [u (1 — u)]—2pL.
For log p, the complete information is pL, the missing information is [mu + (1 — p) (1 — p)] pL, and
the expected observed information is therefore 2u (1 — p) pL

B. Calculation of Fisher information content of a marker panel for gamete
admixture proportions p

The second derivative of the log-likelihood function of a hidden Markov model can be
calculated by a recursive algorithm (29). For two-way admixture on a single gamete with parental
admixture proportion u, the probability of ancestry state j at locus t+1, given state ¢ at locus ¢t and
that the distance between these loci is d; morgans, is given by Fé;;+(1 — F) 1, where F' = e P% and
0;; is an indicator variable for ¢« = j. The log-likelihood can be calculated as a sum of increments
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over loci
T
P(yla'” 7yT) = ZP(yt-i-l ’ Y1, - "7yt)
t=1

We can thus evaluate the second derivative of the log-likelihood as

T
dQIOgP(yla'”7yT) :ZdQIOgP(yt-ﬁ-l ‘ yl)’"ayt)

2 2
dpe t=1 dp

The incremental contribution of the (¢ 4 1)th locus to the log-likelihood is

log P (yer1 [ y1,-- - ye) = log (Floup + (1 — o) (p+ 0)] + (1= F) [up + (1 — ) (p + 9)])

where p is the frequency of the allele observed at locus t + 1 given ancestry state 1, p + ¢ is the
frequency of this allele given ancestry state 2, and o4 is the probability of ancestry state 1 at locus
t, conditioned on the observations from 1 to t. oy is calculated from the following recursion from 1

to t.
pl(1 —F)p+ Foyl

p+0)[A-F)A-p)+FQA—-a)+p[(1-F)p+ Fay

By differentiation we obtain similar recursions for the first and second derivatives of a;11, which are

Qi1 = (

used in the recursion for the second derivative of log P (Y;41 | Y1,...,Y:). The Fisher information
content of the marker panel is evaluated as the average over repeated simulations of minus the
second derivative of the log-likelihood.

C. Calculation of posterior density for the candidate’s formula

To calculate the posterior density p(6* | y), we sample auxiliary variables z that yield sufficient
statistics for 8, allowing the conditional density p (8™ | z) to be evaluated directly. The posterior
density p(6* | y) can then be evaluated by averaging p (8™ | z) over the posterior distribution of z
given y.

p(6" | y) = / p(6" | 2)p(= | y) d=

For a model with K ancestral subpopulations and 7" marker loci, the auxiliary variables z
comprise a 2 X K x T array A of indicator variables for locus ancestry states on each gamete, a
2 x K x T array of indicator variables & which take value 1 if there has been at least one arrival
between locus ¢ and locus t+1 on each gamete, the total numbers N1, Ny of arrivals on each gamete,
and an array H of realized counts of each haplotype at each compound locus on each gamete. The
ancestry states at loci where £ = 1 are sufficient for @y, r2. The numbers Ny, No of arrivals are
sufficient for p1, p2, and H is sufficient for ¢.

Given the auxiliary variables z, u, p and ¢y are conditionally independent. We write a4 for the
parameter vector of the prior on admixture proportions pg on the gth gamete, 1,2 for the shape
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and rate parameters of the gamma prior on the arrival rate p, on the gth gamete, and 3y, for the
parameter vector of the prior on allele frequencies at the tth locus in the kth subpopulation. The
density p (0™ | z) is evaluated as the product of two conjugate Dirichlet densities with parameter
vector (ag + Zle Egt_Agt_> for the admixture proportions on each gamete, two conjugate gamma
densities with scale parameter v; + IV, and rate parameter 2 4 L for the arrival rate parameters on
each gamete, and T' conjugate Dirichlet densities with parameter vector (Btk + ZgzlAgtngtk.)
for the allele frequencies ¢y at the tth locus in the kth subpopulation.

D. Annealed sampling for thermodynamic integration

The observed genotype data y enter the model only through the probabilities P (v | A, )
of genotype 1, given locus ancestry state A; and allele frequencies ¢¢ at locus ¢. Unless the
genotype is homozygous or the ancestry states on the two gametes are the same, P (y; | A¢, ¢¢) is a
sum over possible ordered haplotype pairs compatible with the observed genotype. To anneal the
likelihood at coolness \ we substitute these genotype probabilities with the (unnormalized) annealed
probabilities [P (y: | As, ¢t)]’\. The annealed genotype probabilities can be substituted directly for
the unannealed genotype probabilities in a standard hidden Markov model recursion to calculate the
forward probabilities P (y1,...,y: | A¢), which are used to update admixture proportions, arrival
rate parameter and locus ancestry states. To use the annealed genotype probabilities P (y; | Ay, q.’)t))‘
to update the allele frequencies ¢ conditional on locus ancestry, we use a Hamiltonian sampler
(18) with allele frequencies transformed to the softmax basis. For each update of the variable x, the
state space is augmented with a randomly-drawn “momentum” variable p. A leapfrog algorithm,
using the gradient of the log density to simulate Hamiltonian dynamics, is then used to propose a
joint update of x and p for a Metropolis accept/reject step. A stochastic approximation algorithm
(30) is used to tune the leapfrog step size automatically to achieve a target acceptance rate of 90%
in the Metropolis step.
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Table 1: DNAPrint marker panel with 176 SNPs: total pairwise information content (at admixture
proportion 0.5) for gamete admixture of marker panel between continental groups
African European Native Am E Asian S Asian Mid-East Pacific
African .
FEuropean 76.9 .
Native Am 89.4 52.8

E Asian 97.9 61.7 32.5 .
S Asian 69.8 15.8 35.2 35.6
Mid East 75.1 6.1 50.7 54.8 12.4

Pacific 102.2 64.0 44.2 14.8 42.3 o8
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Table 2: DNAPrint marker panel: expected log-likelihood ratio in favour of no admixture (from
population indexed by row) versus 12.5% admixture on single gamete. Thus the cell with row
labelled N Am and colum labelled Eur is the expected log-likelihood ratio in favour of no Native
American admixture in an individual of European ancestry, and the cell with row labelled Eur and

column labelled N Am is the expected log-likelihood ratio in favour of indexed by cell
Afr Eur NAm EAsian SAsian MidEast Pacific

Afr . 124 1.78 1.75 1.06 1.31 2.15

Eur 1.49 . 115 1.05 0.19 0.06 1.20
NAm 1.56 0.80 . 0.35 0.45 0.72 0.57
EAsian 1.77 0.92  0.50 . 0.47 0.80 0.25
SAsian 1.39 0.23 0.72 0.55 . 0.19 0.85
MidEast 1.35 0.06 1.03 0.95 0.14 . 1.07

Pacific 1.86 0.89 0.64 0.19 0.47 0.79
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Table 3: Comparison of models of ancestry of each individual in the test family: posterior mode for
gamete admixture proportions g1, e and log evidence

(-) indicates subpopulations for which the gamete admixture proportion p was specified as zero in
the model

Posterior mode Log Log Occam Log
1 Jips best-fit factor evidence
Afr Eur N Am Afr Eur N Am likelihood
Parent 1 0.05 0.84 0.12 0.07 0.78 0.16 -136.97 -4.70 -141.67
- 0.91 0.10 0.07 0.81 0.12 -136.42 -3.24 -139.66
- 0.75 0.25 - 1 - -135.40 -1.09 -136.49
- 1 - - 1 - -136.31 0.00 -136.31
Parent 2 0.30 0.18 0.51 0.06 0.12 0.82 -140.48 -2.94 -143.42
0.32 0.27 041 - 0.07 0.94 -139.76 -2.88 -142.65
0.37 0.12 0.51 - - 1 -139.84 -1.29 -141.13
0.43 - 0.57 - - 1 -140.70 -1.44 -142.14
Offspring 1 0.09 0.78 0.13 0.21 0.11 0.68 -139.53 -1.63 -141.16
- 0.69 031 0.27 0.27 0.45 -139.34 -1.14 -140.48
- 1 - 0.22 0.11 0.67 -138.94 -1.27 -140.21
- 1 - 0.27 - 0.73 -137.78 - 1.12 -138.70
Offspring 2 0.08 0.19 0.74 0.12 0.79 0.09 -144.62 -2.13 -146.75
- 0.88 0.12 0.12 0.13 0.75 -143.34 -2.27 -145.61
- 1 - 0.10 0.16 0.74 -143.43 -1.57 -145.01
- 1 - 0.18 - 0.82 -142.83 -1.44 -144.27
Offspring 3 0.10 0.43 047 0.08 0.64 0.28 -138.53 -2.53 -141.06
- 0.72 028 0.14 0.40 046 -138.47 -1.46 -139.93
- - -138.58 -1.14 -139.72
- 1 - 0.13 0.11 0.75 -137.36 -2.14 -139.50

- 1 - 0.15 - 0.85 -137.63 -1.80 -139.43
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Table 4. Log Bayes factors comparing the evidence for each hypothesis of an island of origin, for
a single individual originating from Trinidad

Population ' Log-likelihood Information Log evidence Bayes factor

Guyana -191.27 14.78 -206.05 -29.37
Jamaica -189.11 10.72 -199.83 -23.16
St Vincent -175.02 10.80 -185.82 -9.15
St Lucia -170.60 6.46 -177.06 -0.39
Trinidad -169.59 7.08 -176.67 0.00
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Table 5. Evidence for models with one, two and three ancestral subpopulations given genotypes
at 22 ancestry-informative markers for 446 Hispanic-Americans in San Luis Valley, Colorado

Num subpopulations ‘ Log-likelihood  Information  Log evidence  Pritchard approximation

1 -8266.0 69.5 -8335.5 -8271.7
-8172.8 154.4 -8327.2 -8386.1
3 -8119.9 204.2 -8324.1 -8357.6




